Université de Lorraine, INRAE, IAM, Nancy, France; Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany.
Université de Lorraine, CNRS, CRM2, Nancy, France; CSGA, UMR1324 INRAE, UMR6265 CNRS, Université de Bourgogne, Agrosup Dijon, Dijon, France.
Fungal Genet Biol. 2021 Mar;148:103506. doi: 10.1016/j.fgb.2020.103506. Epub 2021 Jan 12.
The Omega class of glutathione transferases (GSTs) forms a distinct class within the cytosolic GST superfamily because most of them possess a catalytic cysteine residue. The human GST Omega 1 isoform was first characterized twenty years ago, but it took years of work to clarify the roles of the human isoforms. Concerning the kingdom of fungi, little is known about the cellular functions of Omega glutathione transferases (GSTOs), although they are widely represented in some of these organisms. In this study, we re-assess the phylogeny and the classification of GSTOs based on 240 genomes of mushroom-forming fungi (Agaricomycetes). We observe that the number of GSTOs is not only extended in the order of Polyporales but also in other orders such as Boletales. Our analysis leads to a new classification in which the fungal GSTOs are divided into two Types A and B. The catalytic residue of Type-A is either cysteine or serine, while that of Type-B is cysteine. The present study focuses on Trametes versicolor GSTO isoforms that possess a catalytic cysteine residue. Transcriptomic data show that Type-A GSTOs are constitutive enzymes while Type-B are inducible ones. The crystallographic analysis reveals substantial structural differences between the two types while they have similar biochemical profiles in the tested conditions. Additionally, these enzymes have the ability to bind antioxidant molecules such as wood polyphenols in two possible binding sites as observed from X-ray structures. The multiplication of GSTOs could allow fungal organisms to adapt more easily to new environments.
ω 类谷胱甘肽 S-转移酶(GSTs)在细胞溶质 GST 超家族中形成一个独特的类别,因为它们大多数都具有催化半胱氨酸残基。人类 GST Omega 1 同工型在二十年前首次被描述,但花费了多年的时间才阐明了人类同工型的作用。关于真菌王国,人们对ω 谷胱甘肽 S-转移酶(GSTO)的细胞功能知之甚少,尽管它们在这些生物体中的一些中广泛存在。在这项研究中,我们根据 240 种蘑菇形成真菌(伞菌目)的基因组重新评估 GSTO 的系统发育和分类。我们观察到 GSTO 的数量不仅在多孔菌目等其他目,而且在其他目也得到了扩展。我们的分析导致了一种新的分类,其中真菌 GSTO 分为 A 型和 B 型。A 型的催化残基是半胱氨酸或丝氨酸,而 B 型的催化残基是半胱氨酸。本研究集中在具有催化半胱氨酸残基的 Trametes versicolor GSTO 同工型上。转录组数据表明,A 型 GSTO 是组成型酶,而 B 型 GSTO 是诱导型酶。晶体结构分析表明,两种类型之间存在显著的结构差异,而在测试条件下它们具有相似的生化特征。此外,这些酶具有结合抗氧化分子的能力,如从 X 射线结构中观察到的两种可能的结合位点的木多酚。GSTO 的倍增可以使真菌更容易适应新的环境。