Suppr超能文献

一种基于其谱熵的MOMEDA最优参数选择方法。

An Optimal Parameter Selection Method for MOMEDA Based on and Its Spectral Entropy.

作者信息

Li Zhuorui, Ma Jun, Wang Xiaodong, Li Xiang

机构信息

Fauclty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China.

Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China.

出版信息

Sensors (Basel). 2021 Jan 13;21(2):533. doi: 10.3390/s21020533.

Abstract

As a vital component widely used in the industrial production field, rolling bearings work under complicated working conditions and are prone to failure, which will affect the normal operation of the whole mechanical system. Therefore, it is essential to conduct a health assessment of the rolling bearing. In recent years, Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is applied to the fault feature extraction for rolling bearings. However, the algorithm still has the following problems: (1) The selection of fault period depends on prior knowledge. (2) The accuracy of signal denoising is affected by filter length . To solve the limitations, an improved MOMEDA (IMOMEDA) method is proposed in this paper. Firstly, the envelope harmonic-to-noise ratio () spectrum is adopted to estimate the fault period of MOMEDA. Then, the improved grid search method with spectral entropy as the objective function is constructed to calculate the optimal filter length used in the MOMEDA. Finally, a feature extraction method based on the improved MOMEDA (IMOMEDA) and Teager-Kaiser energy operator (TKEO) is applied in the field of rolling bearing fault diagnosis. The effectiveness and generalization performance of the proposed method is verified through comparison experiment with three data sets.

摘要

作为工业生产领域广泛使用的关键部件,滚动轴承在复杂的工况下工作,容易出现故障,这将影响整个机械系统的正常运行。因此,对滚动轴承进行健康评估至关重要。近年来,多点最优最小熵反褶积调整法(MOMEDA)被应用于滚动轴承的故障特征提取。然而,该算法仍存在以下问题:(1)故障周期的选择依赖先验知识。(2)信号去噪精度受滤波器长度影响。为解决这些局限性,本文提出一种改进的MOMEDA(IMOMEDA)方法。首先,采用包络谐波信噪比()谱估计MOMEDA的故障周期。然后,构建以谱熵为目标函数的改进网格搜索方法,计算MOMEDA中使用的最优滤波器长度。最后,将基于改进MOMEDA(IMOMEDA)和Teager-Kaiser能量算子(TKEO)的特征提取方法应用于滚动轴承故障诊断领域。通过与三个数据集的对比实验,验证了所提方法的有效性和泛化性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d8e/7828531/f854f2fce9fb/sensors-21-00533-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验