Bianchi David M, Peterson Joseph R, Earnest Tyler M, Hallock Michael J, Luthey-Schulten Zaida
Department of Chemistry, University of Illinois at Urbana-Champaign, 505 S Mathews Ave, Urbana, USA.
NSF Center for the Physics of Living Cells, 1110 W Green St, MC-704, 320 Loomis Laboratory, Urbana, USA.
IET Syst Biol. 2018 Aug;12(4):170-176. doi: 10.1049/iet-syb.2017.0070.
It is well known that stochasticity in gene expression is an important source of noise that can have profound effects on the fate of a living cell. In the galactose genetic switch in yeast, the unbinding of a transcription repressor is induced by high concentrations of sugar particles activating gene expression of sugar transporters. This response results in high propensity for all reactions involving interactions with the metabolite. The reactions for gene expression, feedback loops and transport are typically described by chemical master equations (CME). Sampling the CME using the stochastic simulation algorithm (SSA) results in large computational costs as each reaction event is evaluated explicitly. To improve the computational efficiency of cell simulations involving high particle number systems, the authors have implemented a hybrid stochastic-deterministic (CME-ODE) method into the publically available, GPU-based lattice microbes (LM) software suite and its python interface pyLM. LM and pyLM provide a convenient way to simulate complex cellular systems and interface with high-performance RDME/CME/ODE solvers. As a test of the implementation, the authors apply the hybrid CME-ODE method to the galactose switch in Saccharomyces cerevisiae, gaining a 10-50× speedup while yielding protein distributions and species traces similar to the pure SSA CME.
众所周知,基因表达中的随机性是一种重要的噪声来源,可能对活细胞的命运产生深远影响。在酵母中的半乳糖遗传开关中,转录阻遏物的解离是由高浓度的糖颗粒诱导的,这些糖颗粒激活了糖转运蛋白的基因表达。这种反应导致所有涉及与代谢物相互作用的反应具有很高的倾向性。基因表达、反馈回路和运输的反应通常用化学主方程(CME)来描述。使用随机模拟算法(SSA)对CME进行采样会导致巨大的计算成本,因为每个反应事件都需要明确评估。为了提高涉及高粒子数系统的细胞模拟的计算效率,作者已将一种混合随机-确定性(CME-ODE)方法应用于公开可用的、基于GPU的晶格微生物(LM)软件套件及其Python接口pyLM。LM和pyLM提供了一种方便的方式来模拟复杂的细胞系统,并与高性能的RDME/CME/ODE求解器进行接口。作为对该实现的测试,作者将混合CME-ODE方法应用于酿酒酵母中的半乳糖开关,在产生与纯SSA CME相似的蛋白质分布和物种轨迹的同时,实现了10至50倍的加速。