Departamento de Ingeniería Energética, ETSI Industriales, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal 2, 28006, Madrid, Spain; Biología y Técnica de la Radiación, S.L. (Bioterra, S.L.), Camino de los Perdigones 2, 28224, Pozuelo de Alarcón, Madrid, Spain.
Departamento de Ingeniería Energética, ETSI Industriales, Universidad Politécnica de Madrid, C. José Gutiérrez Abascal 2, 28006, Madrid, Spain.
Appl Radiat Isot. 2021 Mar;169:109279. doi: 10.1016/j.apradiso.2020.109279. Epub 2020 Jul 6.
Proton therapy (PT) is an external radiotherapy using proton beams with energies between 70 and 230 MeV to treat some type of tumours with outstanding benefits, due to its energy transfer plot. There is a growing demand of facilities taking up small spaces and Compact Proton Therapy Centers (CPTC), with one or two treatment rooms, supposing the technical response of manufacturers to this request. A large amount of stray radiation is produced in the interaction of protons used in therapy, neutrons mainly, hence, optimal design of shielding and verifications must be carried out in commissioning stages. Currently, almost 50 CPTC are under construction and start up in many countries, including several in Spain. In the present work, the effectiveness of shielding in a CPTC was verified with the Monte Carlo code MCNP6 by calculating the ambient dose equivalent, H*(10) due to secondary neutrons, outside the enclosures and walls of the center. The facility modelled was similar to one planned to start operating in 2019 in Spain, a CPTC, made up of a superconducting synchrocyclotron and one treatment room, with a configuration standard, shielding and width of barriers based on dimensions proposed a priori by the vendor. Therefore, the paper is focused in check the suitability of the materials and thickness of the walls of the center and develop the assessment of enclosures. Several models of the radiation sources and type of concrete in walls were simulated, starting from a conservative assumptions, followed by more realistic models. In all cases, the results were below 1 mSv/year, which is the international legal limit considered for the general public. This work is part of the project Contributions to Shielding and Dosimetry of Neutrons in Compact Proton Therapy Centers (CPTC).
质子治疗(PT)是一种使用能量在 70 至 230 MeV 之间的质子束进行的外部放射治疗,由于其能量传递图,它对某些类型的肿瘤具有显著的益处。由于制造商对这一需求的技术响应,对占用空间小的设施和紧凑型质子治疗中心(CPTC)的需求不断增长,这些中心只有一个或两个治疗室。在治疗中使用的质子相互作用会产生大量的散射辐射,主要是中子,因此,在调试阶段必须进行屏蔽的最佳设计和验证。目前,几乎有 50 个 CPTC 正在许多国家建设和启动,包括西班牙的几个。在本工作中,通过使用蒙特卡罗代码 MCNP6 计算外壳和中心墙壁外的次级中子引起的环境剂量当量 H*(10),验证了 CPTC 的屏蔽效果。所建模的设施类似于计划于 2019 年在西班牙运行的 CPTC,由超导同步回旋加速器和一个治疗室组成,采用标准配置、基于供应商预先提出的尺寸的屏蔽和屏障宽度。因此,本文的重点是检查中心墙壁的材料和厚度的适用性,并开发外壳的评估。从保守假设开始,模拟了几种辐射源和墙壁中混凝土类型的模型,然后是更现实的模型。在所有情况下,结果都低于 1 mSv/年,这是国际上对公众考虑的法定限制。这项工作是“紧凑型质子治疗中心(CPTC)中的中子屏蔽和剂量学贡献”项目的一部分。