Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, China.
State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02522-20.
Golgins are coiled-coil proteins that play prominent roles in maintaining the structure and function of the Golgi complex. However, the role of golgin proteins in phytopathogenic fungi remains poorly understood. In this study, we functionally characterized the golgin protein RUD3, a homolog of RUD3/GMAP-210 in and mammalian cells. Cellular localization observation revealed that RUD3 is located in the -Golgi. Deletion of RUD3 caused defects in vegetative growth, ascospore discharge, deoxynivalenol (DON) production, and virulence. Moreover, the Δ mutant showed reduced expression of genes and impairment of the formation of toxisomes, both of which play essential roles in DON biosynthesis. We further used green fluorescent protein (GFP)-tagged SNARE protein SEC22 (SEC22-GFP) as a tool to study the transport between the endoplasmic reticulum (ER) and Golgi and observed that SEC22-GFP was retained in the -Golgi in the Δ mutant. RUD3 contains the coiled coil (CC), GRAB-associated 2 (GA2), GRIP-related Arf binding (GRAB), and GRAB-associated 1 (GA1) domains, which except for GA1, are indispensable for normal localization and function of RUD3, whereas only CC is essential for normal RUD3-RUD3 interaction. Together, these results demonstrate how the golgin protein RUD3 mediates retrograde trafficking in the ER-to-Golgi pathway and is necessary for growth, ascospore discharge, DON biosynthesis, and pathogenicity in head blight (FHB) caused by the fungal pathogen is an economically important disease of wheat and other small grain cereal crops worldwide, and limited effective control strategies are available. A better understanding of the regulation mechanisms of development, deoxynivalenol (DON) biosynthesis, and pathogenicity is therefore important for the development of effective control management of this disease. Golgins are attached via their extreme carboxy terminus to the Golgi membrane and are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. In this study, we systematically characterized a highly conserved Golgin protein, RUD3, and found that it is required for vegetative growth, ascospore discharge, DON production, and pathogenicity in Our findings provide a comprehensive characterization of the golgin family protein RUD3 in plant-pathogenic fungus, which could help to identify a new potential target for effective control of this devastating disease.
高尔基蛋白是一种卷曲螺旋蛋白,在维持高尔基体复合体的结构和功能方面发挥着重要作用。然而,高尔基蛋白在植物病原真菌中的作用仍知之甚少。在这项研究中,我们对高尔基蛋白 RUD3 进行了功能表征,RUD3 是 和哺乳动物细胞中 RUD3/GMAP-210 的同源物。细胞定位观察表明,RUD3 位于 -高尔基体。RUD3 的缺失导致营养生长、分生孢子排放、脱氧雪腐镰刀菌烯醇 (DON) 产生和毒力缺陷。此外,Δ突变体表现出 基因表达减少和产毒体形成受损,这两者在 DON 生物合成中都起着至关重要的作用。我们进一步使用绿色荧光蛋白 (GFP) 标记的 SNARE 蛋白 SEC22 (SEC22-GFP) 作为工具来研究内质网 (ER) 和高尔基体之间的运输,观察到在 Δ突变体中,SEC22-GFP 被保留在 -高尔基体中。RUD3 包含卷曲螺旋 (CC)、GRAB 相关 2 (GA2)、GRIP 相关 ARF 结合 (GRAB) 和 GRAB 相关 1 (GA1) 结构域,除了 GA1 之外,这些结构域对于 RUD3 的正常定位和功能都是不可或缺的,而只有 CC 对于正常的 RUD3-RUD3 相互作用是必需的。总之,这些结果表明高尔基蛋白 RUD3 如何介导 ER 到高尔基体途径中的逆行运输,并且对于小麦等小谷物作物的真菌病原体引起的头部霉变 (FHB) 的生长、分生孢子排放、DON 生物合成和致病性是必要的。FHB 是一种在全球范围内对小麦和其他小谷物作物造成严重经济损失的疾病,目前可用的有效控制策略有限。因此,更好地了解 的发育、脱氧雪腐镰刀菌烯醇 (DON) 生物合成和致病性的调控机制对于开发这种疾病的有效控制管理至关重要。高尔基蛋白通过其极端羧基末端与高尔基体膜相连,并参与真核细胞中囊泡运输和细胞器的维持。在这项研究中,我们系统地表征了一个高度保守的高尔基蛋白 RUD3,并发现它对于 的营养生长、分生孢子排放、DON 产生和致病性是必需的。我们的研究结果提供了植物病原真菌高尔基家族蛋白 RUD3 的全面表征,这可能有助于确定一种新的潜在目标,以有效控制这种破坏性疾病。