Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
J Mol Biol. 2021 Jul 9;433(14):166813. doi: 10.1016/j.jmb.2021.166813. Epub 2021 Jan 13.
The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.
一般转录因子 TFIIH 包含三种 ATP 依赖性催化活性。TFIIH 在核苷酸切除修复中主要作为 DNA 解旋酶,在 Pol II 转录起始中作为 dsDNA 转位酶和蛋白激酶发挥作用。在起始过程中,TFIIH 的 XPB/Ssl2 亚基将 ATP 水解与 dsDNA 转位偶联,促进启动子开放,激酶模块磷酸化 Pol II,促进向延伸的转变。这些功能在后生动物和酵母之间是保守的;然而,酵母 TFIIH 还驱动转录起始位点扫描,其中 Pol II 扫描下游 DNA 以找到有活性的起始位点。来自酿酒酵母的十亚基全酶 TFIIH 具有进行性 dsDNA 转位酶活性,这是扫描所必需的,并且扫描的结构作用已归因于三亚基 TFIIH 激酶模块。在这里,我们评估了来自酿酒酵母和 H. sapiens 的十亚基全酶和核心-TFIIH 复合物(即缺乏激酶模块的七亚基)的 dsDNA 转位酶活性。我们发现,全酶和核心人 TFIIH 均不表现出进行性转位,这与人类缺乏起始位点扫描一致。此外,与全酶 TFIIH 相反,酿酒酵母核心-TFIIH 也缺乏进行性转位,其 dsDNA 刺激的 ATP 酶活性降低了约 5 倍,与人类复合物的水平相当,这可能解释了在缺乏酿酒酵母激酶模块的情况下体外观察到的报道的起始位点上游移位。这些结果表明,人或酿酒酵母核心-TFIIH 均不能有效地进行转位,而酿酒酵母激酶模块作为一个进行性因子发挥作用,以允许强大的转录起始位点扫描。