Suppr超能文献

XPB/Ssl2 双链 DNA 转位酶的延伸能力在转录起始位点扫描中的作用。

The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning.

机构信息

Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.

Dept. of Biochemistry, University of Colorado, Boulder, CO 80303, USA.

出版信息

J Mol Biol. 2021 Jul 9;433(14):166813. doi: 10.1016/j.jmb.2021.166813. Epub 2021 Jan 13.

Abstract

The general transcription factor TFIIH contains three ATP-dependent catalytic activities. TFIIH functions in nucleotide excision repair primarily as a DNA helicase and in Pol II transcription initiation as a dsDNA translocase and protein kinase. During initiation, the XPB/Ssl2 subunit of TFIIH couples ATP hydrolysis to dsDNA translocation facilitating promoter opening and the kinase module phosphorylates Pol II to facilitate the transition to elongation. These functions are conserved between metazoans and yeast; however, yeast TFIIH also drives transcription start-site scanning in which Pol II scans downstream DNA to locate productive start-sites. The ten-subunit holo-TFIIH from S. cerevisiae has a processive dsDNA translocase activity required for scanning and a structural role in scanning has been ascribed to the three-subunit TFIIH kinase module. Here, we assess the dsDNA translocase activity of ten-subunit holo- and core-TFIIH complexes (i.e. seven subunits, lacking the kinase module) from both S. cerevisiae and H. sapiens. We find that neither holo nor core human TFIIH exhibit processive translocation, consistent with the lack of start-site scanning in humans. Furthermore, in contrast to holo-TFIIH, the S. cerevisiae core-TFIIH also lacks processive translocation and its dsDNA-stimulated ATPase activity was reduced ~5-fold to a level comparable to the human complexes, potentially explaining the reported upstream shift in start-site observed in vitro in the absence of the S. cerevisiae kinase module. These results suggest that neither human nor S. cerevisiae core-TFIIH can translocate efficiently, and that the S. cerevisiae kinase module functions as a processivity factor to allow for robust transcription start-site scanning.

摘要

一般转录因子 TFIIH 包含三种 ATP 依赖性催化活性。TFIIH 在核苷酸切除修复中主要作为 DNA 解旋酶,在 Pol II 转录起始中作为 dsDNA 转位酶和蛋白激酶发挥作用。在起始过程中,TFIIH 的 XPB/Ssl2 亚基将 ATP 水解与 dsDNA 转位偶联,促进启动子开放,激酶模块磷酸化 Pol II,促进向延伸的转变。这些功能在后生动物和酵母之间是保守的;然而,酵母 TFIIH 还驱动转录起始位点扫描,其中 Pol II 扫描下游 DNA 以找到有活性的起始位点。来自酿酒酵母的十亚基全酶 TFIIH 具有进行性 dsDNA 转位酶活性,这是扫描所必需的,并且扫描的结构作用已归因于三亚基 TFIIH 激酶模块。在这里,我们评估了来自酿酒酵母和 H. sapiens 的十亚基全酶和核心-TFIIH 复合物(即缺乏激酶模块的七亚基)的 dsDNA 转位酶活性。我们发现,全酶和核心人 TFIIH 均不表现出进行性转位,这与人类缺乏起始位点扫描一致。此外,与全酶 TFIIH 相反,酿酒酵母核心-TFIIH 也缺乏进行性转位,其 dsDNA 刺激的 ATP 酶活性降低了约 5 倍,与人类复合物的水平相当,这可能解释了在缺乏酿酒酵母激酶模块的情况下体外观察到的报道的起始位点上游移位。这些结果表明,人或酿酒酵母核心-TFIIH 均不能有效地进行转位,而酿酒酵母激酶模块作为一个进行性因子发挥作用,以允许强大的转录起始位点扫描。

相似文献

1
The Role of XPB/Ssl2 dsDNA Translocase Processivity in Transcription Start-site Scanning.
J Mol Biol. 2021 Jul 9;433(14):166813. doi: 10.1016/j.jmb.2021.166813. Epub 2021 Jan 13.
2
Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in .
Elife. 2021 Oct 15;10:e71013. doi: 10.7554/eLife.71013.
3
Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation.
Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):3961-6. doi: 10.1073/pnas.1417709112. Epub 2015 Mar 16.
5
TFIIH generates a six-base-pair open complex during RNAP II transcription initiation and start-site scanning.
Nat Struct Mol Biol. 2017 Dec;24(12):1139-1145. doi: 10.1038/nsmb.3500. Epub 2017 Nov 6.
7
Mechanism of start site selection by RNA polymerase II: interplay between TFIIB and Ssl2/XPB helicase subunit of TFIIH.
J Biol Chem. 2012 Jan 2;287(1):557-567. doi: 10.1074/jbc.M111.281576. Epub 2011 Nov 11.
8
How to limit the speed of a motor: the intricate regulation of the XPB ATPase and translocase in TFIIH.
Nucleic Acids Res. 2020 Dec 2;48(21):12282-12296. doi: 10.1093/nar/gkaa911.
9
STK19 facilitates the clearance of lesion-stalled RNAPII during transcription-coupled DNA repair.
Cell. 2024 Dec 12;187(25):7107-7125.e25. doi: 10.1016/j.cell.2024.10.018. Epub 2024 Nov 14.
10
Structures of mammalian RNA polymerase II pre-initiation complexes.
Nature. 2021 Jun;594(7861):124-128. doi: 10.1038/s41586-021-03554-8. Epub 2021 Apr 26.

引用本文的文献

1
Imaging-Based High-Content Screening with Clickable Probes Identifies XPB Inhibitors.
Angew Chem Int Ed Engl. 2025 Sep 1;64(36):e202505585. doi: 10.1002/anie.202505585. Epub 2025 Jul 30.
3
Transcription start site scanning requires the fungi-specific hydrophobic loop of Tfb3.
Nucleic Acids Res. 2024 Oct 28;52(19):11602-11611. doi: 10.1093/nar/gkae805.
5
Structural visualization of de novo transcription initiation by Saccharomyces cerevisiae RNA polymerase II.
Mol Cell. 2022 Feb 3;82(3):660-676.e9. doi: 10.1016/j.molcel.2021.12.020. Epub 2022 Jan 19.
6
Ssl2/TFIIH function in transcription start site scanning by RNA polymerase II in .
Elife. 2021 Oct 15;10:e71013. doi: 10.7554/eLife.71013.
7
Everything at once: cryo-EM yields remarkable insights into human RNA polymerase II transcription.
Nat Struct Mol Biol. 2021 Jul;28(7):540-543. doi: 10.1038/s41594-021-00613-6.
8
RNA Polymerase II Transcription.
J Mol Biol. 2021 Jul 9;433(14):167037. doi: 10.1016/j.jmb.2021.167037. Epub 2021 May 4.

本文引用的文献

1
The origin and evolution of a distinct mechanism of transcription initiation in yeasts.
Genome Res. 2021 Jan;31(1):51-63. doi: 10.1101/gr.264325.120. Epub 2020 Nov 20.
2
Selective inhibition of CDK7 reveals high-confidence targets and new models for TFIIH function in transcription.
Genes Dev. 2020 Nov 1;34(21-22):1452-1473. doi: 10.1101/gad.341545.120. Epub 2020 Oct 15.
3
Envisioning how the prototypic molecular machine TFIIH functions in transcription initiation and DNA repair.
DNA Repair (Amst). 2020 Dec;96:102972. doi: 10.1016/j.dnarep.2020.102972. Epub 2020 Sep 17.
4
Universal promoter scanning by Pol II during transcription initiation in Saccharomyces cerevisiae.
Genome Biol. 2020 Jun 2;21(1):132. doi: 10.1186/s13059-020-02040-0.
5
Structure and mechanism of the RNA polymerase II transcription machinery.
Genes Dev. 2020 Apr 1;34(7-8):465-488. doi: 10.1101/gad.335679.119.
6
TFIID Enables RNA Polymerase II Promoter-Proximal Pausing.
Mol Cell. 2020 May 21;78(4):785-793.e8. doi: 10.1016/j.molcel.2020.03.008. Epub 2020 Mar 30.
7
Structural basis of TFIIH activation for nucleotide excision repair.
Nat Commun. 2019 Jun 28;10(1):2885. doi: 10.1038/s41467-019-10745-5.
8
Transcription preinitiation complex structure and dynamics provide insight into genetic diseases.
Nat Struct Mol Biol. 2019 Jun;26(6):397-406. doi: 10.1038/s41594-019-0220-3. Epub 2019 May 20.
9
The complete structure of the human TFIIH core complex.
Elife. 2019 Mar 12;8:e44771. doi: 10.7554/eLife.44771.
10
TFIIH: A multi-subunit complex at the cross-roads of transcription and DNA repair.
Adv Protein Chem Struct Biol. 2019;115:21-67. doi: 10.1016/bs.apcsb.2019.01.003. Epub 2019 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验