Department of Mechanical Engineering, Polytechnique Montreal, Quebec, Canada.
Institut de recherche Robert Sauvé en santé et en sécurité du travail, Montréal, Québec, Canada.
Acta Biomater. 2021 Mar 15;123:208-221. doi: 10.1016/j.actbio.2020.12.062. Epub 2021 Jan 13.
Collagen fibers within the annulus fibrosus (AF) lamellae are unidirectionally aligned with alternating orientations between adjacent layers. AF constitutive models often combine two adjacent lamellae into a single equivalent layer containing two fiber networks with a crisscross pattern. Additionally, AF models overlook the inter-lamellar matrix (ILM) as well as elastic fiber networks in between lamellae. We developed a nonhomogenous micromechanical model as well as two coarser homogenous hyperelastic and microplane models of the human AF, and compared their performances against measurements (tissue level uniaxial and biaxial tests as well as whole disc experiments) and seven published hyperelastic models. The micromechanical model had a realistic non-homogenous distribution of collagen fiber networks within each lamella and elastic fiber network in the ILM. For small matrix linear moduli (<0.2 MPa), the ILM showed substantial anisotropy (>10%) due to the elastic fiber network. However, at moduli >0.2 MPa, the effects of the elastic fiber network on differences in stress-strain responses at different directions disappeared (<10%). Variations in sample geometry and boundary conditions (due to uncertainty) markedly affected stress-strain responses of the tissue in uniaxial and biaxial tests (up to 16 times). In tissue level tests, therefore, simulations should represent testing conditions (e.g., boundary conditions, specimen geometry, preloads) as closely as possible. Stress/strain fields estimated from the single equivalent layer approach (conventional method) yielded different results from those predicted by the anatomically more accurate apparoach (i.e., layerwise). In addition, in a disc under a compressive force (symmetric loading), asymmetric stress-strain distributions were computed when using a layerwise simulation. Although all developed and selected published AF models predicted gross compression-displacement responses of the whole disc within the range of measured data, some showed excessively stiff or compliant responses under tissue-level uniaxial/biaxial tests. This study emphasizes, when constructing and validating constitutive models of AF, the importance of the proper simulation of individual lamellae as distinct layers, and testing parameters (sample geometric dimensions/loading/boundary conditions).
纤维环(AF)板层内的胶原纤维呈单向排列,相邻层之间的取向交替。AF 本构模型通常将两个相邻的板层组合成一个具有交错图案的单个等效层,其中包含两个纤维网络。此外,AF 模型忽略了板层之间的层间基质(ILM)以及弹性纤维网络。我们开发了一种非均匀细观力学模型以及两种较粗的同质超弹性和微平面模型来模拟人类 AF,并将它们的性能与测量值(组织水平单轴和双轴测试以及整个椎间盘实验)和七个已发表的超弹性模型进行了比较。细观力学模型在每个板层内具有真实的胶原纤维网络和 ILM 内的弹性纤维网络的非均匀分布。对于较小的基质线性模量(<0.2 MPa),由于弹性纤维网络的存在,ILM 表现出明显的各向异性(>10%)。然而,在模量>0.2 MPa 时,弹性纤维网络对不同方向的应力-应变响应差异的影响消失(<10%)。由于不确定性,样品几何形状和边界条件的变化显著影响了单轴和双轴测试中组织的应力-应变响应(高达 16 倍)。因此,在组织水平测试中,模拟应该尽可能地代表测试条件(例如边界条件、样品几何形状、预载)。从单一等效层方法(常规方法)估计的应力/应变场产生的结果与从解剖学上更准确的方法(即分层方法)预测的结果不同。此外,在椎间盘在压缩力(对称加载)下,当使用分层模拟时,计算出的不对称的应力-应变分布。尽管所有开发和选择的已发表的 AF 模型都预测了整个椎间盘在测量数据范围内的总体压缩-位移响应,但在组织水平单轴/双轴测试中,有些模型表现出过度僵硬或顺应性响应。本研究强调,在构建和验证 AF 的本构模型时,正确模拟单独的板层作为不同的层以及测试参数(样品几何尺寸/加载/边界条件)的重要性。