Kandil Karim, Zaïri Fahmi, Zaïri Fahed
Icam School of Engineering - Site of Lille, 6 rue Auber, 59016, Lille, France.
Laboratoire de Génie Civil et géo-Environnement, ULR 4515 - LGCgE, Univ. Lille, IMT Lille Douai, Univ. Artois, JUNIA, 59000, Lille, France.
Ann Biomed Eng. 2023 Aug;51(8):1747-1758. doi: 10.1007/s10439-023-03179-0. Epub 2023 Mar 28.
There is an increasing demand to develop predictive medicine through the creation of predictive models and digital twins of the different body organs. To obtain accurate predictions, real local microstructure, morphology changes and their accompanying physiological degenerative effects must be taken into account. In this article, we present a numerical model to estimate the long-term aging effect on the human intervertebral disc response by means of a microstructure-based mechanistic approach. It allows to monitor in-silico the variations in disc geometry and local mechanical fields induced by age-dependent long-term microstructure changes. Both lamellar and interlamellar zones of the disc annulus fibrosus are constitutively represented by considering the main underlying microstructure features in terms of proteoglycans network viscoelasticity, collagen network elasticity (along with content and orientation) and chemical-induced fluid transfer. With age, a noticeable increase in shear strain is especially observed in the posterior and lateral posterior regions of the annulus which is in correlation with the high vulnerability of elderly people to back problems and posterior disc hernia. Important insights about the relation between age-dependent microstructure features, disc mechanics and disc damage are revealed using the present approach. These numerical observations are hardly obtainable using current experimental technologies which makes our numerical tool useful for patient-specific long-term predictions.
通过创建不同身体器官的预测模型和数字孪生体来发展预测医学的需求日益增长。为了获得准确的预测,必须考虑真实的局部微观结构、形态变化及其伴随的生理退化效应。在本文中,我们提出了一个数值模型,通过基于微观结构的力学方法来估计长期老化对人体椎间盘响应的影响。它能够在计算机模拟中监测由年龄相关的长期微观结构变化引起的椎间盘几何形状和局部力学场的变化。通过考虑蛋白聚糖网络粘弹性、胶原网络弹性(以及含量和取向)和化学诱导的流体转移等主要潜在微观结构特征,对椎间盘纤维环的层状和层间区域进行了本构表征。随着年龄的增长,尤其在纤维环的后部和后外侧区域观察到剪切应变显著增加,这与老年人背部问题和后椎间盘突出的高易感性相关。使用本方法揭示了关于年龄相关微观结构特征、椎间盘力学和椎间盘损伤之间关系的重要见解。使用当前的实验技术很难获得这些数值观测结果,这使得我们的数值工具对于患者特定的长期预测很有用。