Suppr超能文献

测量由液-液相分离形成的隔室内功能性RNA的活性和结构。

Measuring the activity and structure of functional RNAs inside compartments formed by liquid-liquid phase separation.

作者信息

Poudyal Raghav R, Meyer McCauley O, Bevilacqua Philip C

机构信息

Department of Chemistry, Pennsylvania State University, University Park, PA, United States; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States.

Department of Biochemistry, Microbiology, and Molecular Biology, Pennsylvania State University, University Park, PA, United States; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, United States.

出版信息

Methods Enzymol. 2021;646:307-327. doi: 10.1016/bs.mie.2020.06.010. Epub 2020 Jul 10.

Abstract

Liquid-liquid phase separation (LLPS) has been known to drive formation of biomolecular compartments, which can encapsulate RNA and proteins among other cosolutes. Such compartments, which lack a lipid membrane, have been implicated in origins of life scenarios as they can easily uptake and concentrate biomolecules, similar to intracellular condensates. Indeed, chemical interactions that drive LLPS in vitro have also been shown to lead to similar sub-cellular compartments in vivo. Here we describe methods to prepare compartments formed by complex coacervates, which are driven by LLPS of oppositely-charged polyions, and to probe the structures and functions of RNAs in them. These methods can be adapted to study RNA biochemistry in compartments formed by diverse artificial and biological macromolecules.

摘要

已知液-液相分离(LLPS)可驱动生物分子隔室的形成,这种隔室能够包封RNA、蛋白质及其他共溶质。此类缺乏脂质膜的隔室与生命起源假说相关,因为它们能够像细胞内凝聚物一样轻松摄取并浓缩生物分子。实际上,在体外驱动LLPS的化学相互作用在体内也已被证明会导致形成类似的亚细胞隔室。在此,我们描述了制备由复合凝聚层形成的隔室的方法,这些隔室由带相反电荷的聚离子的LLPS驱动,并对其中RNA的结构和功能进行探测。这些方法可用于研究由各种人工和生物大分子形成的隔室中的RNA生物化学。

相似文献

1
Measuring the activity and structure of functional RNAs inside compartments formed by liquid-liquid phase separation.
Methods Enzymol. 2021;646:307-327. doi: 10.1016/bs.mie.2020.06.010. Epub 2020 Jul 10.
2
Self-Assembling Polypeptides in Complex Coacervation.
Acc Chem Res. 2024 Feb 6;57(3):386-398. doi: 10.1021/acs.accounts.3c00689. Epub 2024 Jan 22.
3
Biomolecular Chemistry in Liquid Phase Separated Compartments.
Front Mol Biosci. 2019 Apr 3;6:21. doi: 10.3389/fmolb.2019.00021. eCollection 2019.
4
Phase separation in RNA biology.
J Genet Genomics. 2021 Oct 20;48(10):872-880. doi: 10.1016/j.jgg.2021.07.012. Epub 2021 Aug 8.
5
Dynamic Control of Functional Coacervates in Synthetic Cells.
ACS Synth Biol. 2023 Jul 21;12(7):2168-2177. doi: 10.1021/acssynbio.3c00249. Epub 2023 Jun 19.
6
LncRNAs divide and rule: The master regulators of phase separation.
Front Genet. 2022 Aug 10;13:930792. doi: 10.3389/fgene.2022.930792. eCollection 2022.
7
Coacervates meet the RNP-world: liquid-liquid phase separation and the emergence of biological compartmentalization.
Biosystems. 2025 Jun;252:105480. doi: 10.1016/j.biosystems.2025.105480. Epub 2025 May 3.
8
Biomolecular Condensates: Structure, Functions, Methods of Research.
Biochemistry (Mosc). 2024 Jan;89(Suppl 1):S205-S223. doi: 10.1134/S0006297924140116.
9
RPS 2.0: an updated database of RNAs involved in liquid-liquid phase separation.
Nucleic Acids Res. 2025 Jan 6;53(D1):D299-D309. doi: 10.1093/nar/gkae951.
10
Liquid-liquid Phase Separation in Viral Function.
J Mol Biol. 2023 Aug 15;435(16):167955. doi: 10.1016/j.jmb.2023.167955. Epub 2023 Jan 13.

引用本文的文献

2
Structure-seq of tRNAs and other short RNAs in droplets and in vivo.
Methods Enzymol. 2023;691:81-126. doi: 10.1016/bs.mie.2023.05.006. Epub 2023 Jun 27.
3
RNA folding studies inside peptide-rich droplets reveal roles of modified nucleosides at the origin of life.
Sci Adv. 2023 Sep 22;9(38):eadh5152. doi: 10.1126/sciadv.adh5152. Epub 2023 Sep 20.
4
Extracellular RNA as a kind of communication molecule and emerging cancer biomarker.
Front Oncol. 2022 Nov 17;12:960072. doi: 10.3389/fonc.2022.960072. eCollection 2022.
5
RNA sequence and structure control assembly and function of RNA condensates.
RNA. 2021 Dec;27(12):1589-1601. doi: 10.1261/rna.078875.121. Epub 2021 Sep 22.

本文引用的文献

1
2
Polyanion-Assisted Ribozyme Catalysis Inside Complex Coacervates.
ACS Chem Biol. 2019 Jun 21;14(6):1243-1248. doi: 10.1021/acschembio.9b00205. Epub 2019 Jun 7.
3
A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos.
Nat Struct Mol Biol. 2019 Mar;26(3):220-226. doi: 10.1038/s41594-019-0193-2. Epub 2019 Mar 4.
5
Probing RNA Structure in Liquid-Liquid Phase Separation Using SHAPE-MaP.
Methods Enzymol. 2018;611:67-79. doi: 10.1016/bs.mie.2018.09.039. Epub 2018 Nov 7.
6
Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.
Biochemistry. 2018 May 1;57(17):2509-2519. doi: 10.1021/acs.biochem.8b00081. Epub 2018 Mar 21.
7
Membraneless organelles can melt nucleic acid duplexes and act as biomolecular filters.
Nat Chem. 2016 Jun;8(6):569-75. doi: 10.1038/nchem.2519. Epub 2016 May 16.
8
Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization of Mg²⁺, Nucleotides, and RNA.
Langmuir. 2016 Mar 1;32(8):2041-9. doi: 10.1021/acs.langmuir.5b04462. Epub 2016 Feb 16.
9
The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.
Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):7189-94. doi: 10.1073/pnas.1504822112. Epub 2015 May 26.
10
Rapid RNA exchange in aqueous two-phase system and coacervate droplets.
Orig Life Evol Biosph. 2014 Feb;44(1):1-12. doi: 10.1007/s11084-014-9355-8. Epub 2014 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验