Suppr超能文献

动态控制合成细胞中的功能性凝聚物。

Dynamic Control of Functional Coacervates in Synthetic Cells.

机构信息

Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.

Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India.

出版信息

ACS Synth Biol. 2023 Jul 21;12(7):2168-2177. doi: 10.1021/acssynbio.3c00249. Epub 2023 Jun 19.

Abstract

Membrane-less compartments formed via liquid-liquid phase separation (LLPS) are regulated dynamically via enzyme reactions in cells. Giant unilamellar vesicles (GUVs) provide a promising chassis to control, mimic, and understand the LLPS process; however, they are challenging to construct. Here, we engineer the dynamic assembly and disassembly of LLPS compartments using complex coacervates as models inside synthetic cells. Semipermeable GUVs constructed with defined lipid composition encapsulate the biomolecules, including enzymes required to regulate coacervates. Assembly and disassembly of coacervates are triggered in independent systems by the diffusion of substrates through the membrane into the vesicle lumen. The coupling of enzyme networks in a single synthetic cell system allows for reversible and out-of-equilibrium regulation of coacervates. The functional properties of the coacervates are revealed by sequestering biomolecules, including drugs and enzymes. GUVs, with functional LLPS compartment assembly, open avenues in constructing programmable autonomous synthetic cells with membrane-less organelles. The coacervate-in-vesicle platform has significant implications for understanding LLPS regulation mechanisms in cells.

摘要

无膜隔间通过液-液相分离 (LLPS) 形成,通过细胞中的酶反应进行动态调节。巨大的单层囊泡 (GUV) 为控制、模拟和理解 LLPS 过程提供了一个很有前途的底盘;然而,它们的构建具有挑战性。在这里,我们使用复杂凝聚物作为模型,在合成细胞内设计 LLPS 隔间的动态组装和拆卸。用定义的脂质组成构建的半透 GUV 封装了包括调节凝聚物所需的酶在内的生物分子。凝聚物的组装和拆卸通过底物通过膜扩散到囊泡腔内在独立的系统中触发。单个合成细胞系统中酶网络的耦合允许凝聚物的可逆和非平衡调节。凝聚物的功能特性通过隔离生物分子(包括药物和酶)来揭示。具有功能性 LLPS 隔间组装的 GUV 为构建具有无膜细胞器的可编程自主合成细胞开辟了道路。凝聚物-囊泡平台对于理解细胞中 LLPS 调节机制具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验