Rowe Sebastian J, Mecaskey Ryan J, Nasef Mohamed, Talton Rachel C, Sharkey Rory E, Halliday Joshua C, Dunkle Jack A
Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
J Biol Chem. 2020 Dec 18;295(51):17476-17485. doi: 10.1074/jbc.RA120.014280.
Erythromycin-resistance methyltransferases are SAM dependent Rossmann fold methyltransferases that convert A2058 of 23S rRNA to mA2058. This modification sterically blocks binding of several classes of antibiotics to 23S rRNA, resulting in a multidrug-resistant phenotype in bacteria expressing the enzyme. ErmC is an erythromycin resistance methyltransferase found in many Gram-positive pathogens, whereas ErmE is found in the soil bacterium that biosynthesizes erythromycin. Whether ErmC and ErmE, which possess only 24% sequence identity, use similar structural elements for rRNA substrate recognition and positioning is not known. To investigate this question, we used structural data from related proteins to guide site-saturation mutagenesis of key residues and characterized selected variants by antibiotic susceptibility testing, single turnover kinetics, and RNA affinity-binding assays. We demonstrate that residues in α4, α5, and the α5-α6 linker are essential for methyltransferase function, including an aromatic residue on α4 that likely forms stacking interactions with the substrate adenosine and basic residues in α5 and the α5-α6 linker that likely mediate conformational rearrangements in the protein and cognate rRNA upon interaction. The functional studies led us to a new structural model for the ErmC or ErmE-rRNA complex.
红霉素抗性甲基转移酶是依赖S-腺苷甲硫氨酸(SAM)的Rossmann折叠甲基转移酶,可将23S rRNA的A2058转化为mA2058。这种修饰在空间上阻碍了几类抗生素与23S rRNA的结合,导致表达该酶的细菌产生多重耐药表型。ErmC是在许多革兰氏阳性病原体中发现的一种红霉素抗性甲基转移酶,而ErmE则存在于生物合成红霉素的土壤细菌中。尚不清楚序列同一性仅为24%的ErmC和ErmE是否使用相似的结构元件来识别和定位rRNA底物。为了研究这个问题,我们利用相关蛋白质的结构数据指导关键残基的位点饱和诱变,并通过抗生素敏感性测试、单周转动力学和RNA亲和结合试验对选定的变体进行了表征。我们证明,α4、α5和α5-α6连接区中的残基对于甲基转移酶功能至关重要,包括α4上的一个芳香族残基,它可能与底物腺苷形成堆积相互作用,以及α5和α5-α6连接区中的碱性残基,它们可能在相互作用时介导蛋白质和同源rRNA中的构象重排。功能研究使我们得到了一个关于ErmC或ErmE-rRNA复合物的新结构模型。