Suppr超能文献

新型荧光 GPCR 生物传感器可检测视网膜与视蛋白和活性 G 蛋白及 arrestin 信号构象的平衡结合。

Novel fluorescent GPCR biosensor detects retinal equilibrium binding to opsin and active G protein and arrestin signaling conformations.

机构信息

Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA.

Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA.

出版信息

J Biol Chem. 2020 Dec 18;295(51):17486-17496. doi: 10.1074/jbc.RA120.014631.

Abstract

Rhodopsin is a canonical class A photosensitive G protein-coupled receptor (GPCR), yet relatively few pharmaceutical agents targeting this visual receptor have been identified, in part due to the unique characteristics of its light-sensitive, covalently bound retinal ligands. Rhodopsin becomes activated when light isomerizes 11-cis-retinal into an agonist, all-trans-retinal (ATR), which enables the receptor to activate its G protein. We have previously demonstrated that, despite being covalently bound, ATR can display properties of equilibrium binding, yet how this is accomplished is unknown. Here, we describe a new approach for both identifying compounds that can activate and attenuate rhodopsin and testing the hypothesis that opsin binds retinal in equilibrium. Our method uses opsin-based fluorescent sensors, which directly report the formation of active receptor conformations by detecting the binding of G protein or arrestin fragments that have been fused onto the receptor's C terminus. We show that these biosensors can be used to monitor equilibrium binding of the agonist, ATR, as well as the noncovalent binding of β-ionone, an antagonist for G protein activation. Finally, we use these novel biosensors to observe ATR release from an activated, unlabeled receptor and its subsequent transfer to the sensor in real time. Taken together, these data support the retinal equilibrium binding hypothesis. The approach we describe should prove directly translatable to other GPCRs, providing a new tool for ligand discovery and mutant characterization.

摘要

视紫红质是一种典型的 A 类光敏感 G 蛋白偶联受体 (GPCR),然而,针对这种视觉受体的药物制剂相对较少,部分原因是其光敏感的、共价结合的视黄醛配体的独特特性。当光将 11-顺式视黄醛异构化为激动剂全反式视黄醛 (ATR) 时,视紫红质被激活,ATR 使受体能够激活其 G 蛋白。我们之前已经证明,尽管是共价结合的,ATR 可以显示平衡结合的特性,但这是如何实现的尚不清楚。在这里,我们描述了一种新的方法,用于鉴定既能激活又能减弱视紫红质活性的化合物,并测试视蛋白以平衡方式结合视黄醛的假说。我们的方法使用基于视蛋白的荧光传感器,通过检测融合到受体 C 末端的 G 蛋白或阻滞蛋白片段的结合,直接报告活性受体构象的形成。我们表明,这些生物传感器可用于监测激动剂 ATR 的平衡结合,以及非共价结合的 β-紫罗兰酮,这是 G 蛋白激活的拮抗剂。最后,我们使用这些新型生物传感器实时观察从激活的未标记受体中释放 ATR 及其随后向传感器的转移。总之,这些数据支持视黄醛平衡结合假说。我们描述的方法应该可以直接转化为其他 GPCR,为配体发现和突变体表征提供新的工具。

相似文献

2
Conformational selection and equilibrium governs the ability of retinals to bind opsin.
J Biol Chem. 2015 Feb 13;290(7):4304-18. doi: 10.1074/jbc.M114.603134. Epub 2014 Dec 1.
3
Decay of an active GPCR: Conformational dynamics govern agonist rebinding and persistence of an active, yet empty, receptor state.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11961-11966. doi: 10.1073/pnas.1606347113. Epub 2016 Oct 4.
4
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
5
The rhodopsin-arrestin-1 interaction in bicelles.
Methods Mol Biol. 2015;1271:77-95. doi: 10.1007/978-1-4939-2330-4_6.
6
Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
Methods Enzymol. 2015;556:563-608. doi: 10.1016/bs.mie.2014.12.014. Epub 2015 Mar 6.
7
Formation and decay of the arrestin·rhodopsin complex in native disc membranes.
J Biol Chem. 2015 May 15;290(20):12919-28. doi: 10.1074/jbc.M114.620898. Epub 2015 Apr 6.
9
Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.
J Biol Chem. 2011 Mar 4;286(9):7359-69. doi: 10.1074/jbc.M110.204941. Epub 2010 Dec 17.
10
Understanding the GPCR biased signaling through G protein and arrestin complex structures.
Curr Opin Struct Biol. 2017 Aug;45:150-159. doi: 10.1016/j.sbi.2017.05.004. Epub 2017 May 27.

引用本文的文献

1
A rapid, tag-free way to purify functional GPCRs.
J Biol Chem. 2024 Jan;300(1):105558. doi: 10.1016/j.jbc.2023.105558. Epub 2023 Dec 12.

本文引用的文献

1
Structure of the M2 muscarinic receptor-β-arrestin complex in a lipid nanodisc.
Nature. 2020 Mar;579(7798):297-302. doi: 10.1038/s41586-020-1954-0. Epub 2020 Jan 16.
2
Structure of the neurotensin receptor 1 in complex with β-arrestin 1.
Nature. 2020 Mar;579(7798):303-308. doi: 10.1038/s41586-020-1953-1. Epub 2020 Jan 16.
3
A complex structure of arrestin-2 bound to a G protein-coupled receptor.
Cell Res. 2019 Dec;29(12):971-983. doi: 10.1038/s41422-019-0256-2. Epub 2019 Nov 27.
4
Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex.
Nat Struct Mol Biol. 2019 Dec;26(12):1123-1131. doi: 10.1038/s41594-019-0330-y. Epub 2019 Nov 18.
5
Cryo-EM structures of GPCRs coupled to G, G and G.
Mol Cell Endocrinol. 2019 May 15;488:1-13. doi: 10.1016/j.mce.2019.02.006. Epub 2019 Mar 28.
6
Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells.
Nat Protoc. 2019 Apr;14(4):1084-1107. doi: 10.1038/s41596-019-0129-7. Epub 2019 Mar 25.
7
Angiotensin Analogs with Divergent Bias Stabilize Distinct Receptor Conformations.
Cell. 2019 Jan 24;176(3):468-478.e11. doi: 10.1016/j.cell.2018.12.005. Epub 2019 Jan 10.
8
Apo-Opsin Exists in Equilibrium Between a Predominant Inactive and a Rare Highly Active State.
J Neurosci. 2019 Jan 9;39(2):212-223. doi: 10.1523/JNEUROSCI.1980-18.2018. Epub 2018 Nov 20.
9
Shift in Conformational Equilibrium Induces Constitutive Activity of G-Protein-Coupled Receptor, Rhodopsin.
J Phys Chem B. 2018 May 10;122(18):4838-4843. doi: 10.1021/acs.jpcb.8b02819. Epub 2018 Apr 27.
10
Biased signalling: from simple switches to allosteric microprocessors.
Nat Rev Drug Discov. 2018 Apr;17(4):243-260. doi: 10.1038/nrd.2017.229. Epub 2018 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验