Institut für Medizinische Physik und Biophysik (CC2), Charité-Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
J Biol Chem. 2011 Mar 4;286(9):7359-69. doi: 10.1074/jbc.M110.204941. Epub 2010 Dec 17.
In the rod cell of the retina, arrestin is responsible for blocking signaling of the G-protein-coupled receptor rhodopsin. The general visual signal transduction model implies that arrestin must be able to interact with a single light-activated, phosphorylated rhodopsin molecule (RhoP), as would be generated at physiologically relevant low light levels. However, the elongated bi-lobed structure of arrestin suggests that it might be able to accommodate two rhodopsin molecules. In this study, we directly addressed the question of binding stoichiometry by quantifying arrestin binding to RhoP in isolated rod outer segment membranes. We manipulated the "photoactivation density," i.e. the percentage of active receptors in the membrane, with the use of a light flash or by partially regenerating membranes containing phosphorylated opsin with 11-cis-retinal. Curiously, we found that the apparent arrestin-RhoP binding stoichiometry was linearly dependent on the photoactivation density, with one-to-one binding at low photoactivation density and one-to-two binding at high photoactivation density. We also observed that, irrespective of the photoactivation density, a single arrestin molecule was able to stabilize the active metarhodopsin II conformation of only a single RhoP. We hypothesize that, although arrestin requires at least a single Rho*P to bind the membrane, a single arrestin can actually interact with a pair of receptors. The ability of arrestin to interact with heterogeneous receptor pairs composed of two different photo-intermediate states would be well suited to the rod cell, which functions at low light intensity but is routinely exposed to several orders of magnitude more light.
在视网膜的视杆细胞中,arrestin 负责阻断 G 蛋白偶联受体视紫红质的信号转导。一般的视觉信号转导模型表明,arrestin 必须能够与单个光激活的、磷酸化的视紫红质分子(RhoP)相互作用,就像在生理相关的低光水平下产生的那样。然而,arrestin 的长双叶结构表明,它可能能够容纳两个视紫红质分子。在这项研究中,我们通过量化分离的视杆外段膜中 RhoP 与 arrestin 的结合来直接解决结合化学计量的问题。我们使用光闪烁或部分再生含有磷酸化视蛋白的膜中的 11-顺式视黄醛,来操纵“光激活密度”,即膜中活性受体的百分比。奇怪的是,我们发现,表观 arrestin-RhoP 结合化学计量与光激活密度呈线性相关,在低光激活密度下为一对一结合,在高光激活密度下为一对一二结合。我们还观察到,无论光激活密度如何,单个 arrestin 分子都能够稳定仅一个 RhoP 的活性视紫红质 II 构象。我们假设,尽管 arrestin 至少需要一个 Rho*P 来结合膜,但单个 arrestin 实际上可以与一对受体相互作用。arrestin 与由两个不同光中间态组成的异质受体对相互作用的能力非常适合视杆细胞,视杆细胞在低光强度下工作,但通常会暴露在几个数量级更多的光线下。