Suppr超能文献

NCBRPred:基于多标签学习的蛋白质核酸结合残基预测。

NCBRPred: predicting nucleic acid binding residues in proteins based on multilabel learning.

机构信息

Computer Science and Technology with Harbin Institute of Technology, Shenzhen, China.

School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, China.

出版信息

Brief Bioinform. 2021 Sep 2;22(5). doi: 10.1093/bib/bbaa397.

Abstract

The interactions between proteins and nucleic acid sequences play many important roles in gene expression and some cellular activities. Accurate prediction of the nucleic acid binding residues in proteins will facilitate the research of the protein functions, gene expression, drug design, etc. In this regard, several computational methods have been proposed to predict the nucleic acid binding residues in proteins. However, these methods cannot satisfactorily measure the global interactions among the residues along protein. Furthermore, these methods are suffering cross-prediction problem, new strategies should be explored to solve this problem. In this study, a new computational method called NCBRPred was proposed to predict the nucleic acid binding residues based on the multilabel sequence labeling model. NCBRPred used the bidirectional Gated Recurrent Units (BiGRUs) to capture the global interactions among the residues, and treats this task as a multilabel learning task. Experimental results on three widely used benchmark datasets and an independent dataset showed that NCBRPred achieved higher predictive results with lower cross-prediction, outperforming 10 existing state-of-the-art predictors. The web-server and a stand-alone package of NCBRPred are freely available at http://bliulab.net/NCBRPred. It is anticipated that NCBRPred will become a very useful tool for identifying nucleic acid binding residues.

摘要

蛋白质与核酸序列的相互作用在基因表达和一些细胞活动中发挥着许多重要作用。准确预测蛋白质中的核酸结合残基将有助于研究蛋白质功能、基因表达、药物设计等。在这方面,已经提出了几种计算方法来预测蛋白质中的核酸结合残基。然而,这些方法不能令人满意地测量残基沿蛋白质的全局相互作用。此外,这些方法还存在交叉预测问题,需要探索新的策略来解决这个问题。在这项研究中,提出了一种新的计算方法,称为 NCBRPred,该方法基于多标签序列标记模型来预测核酸结合残基。NCBRPred 使用双向门控循环单元 (BiGRUs) 来捕获残基之间的全局相互作用,并将此任务视为多标签学习任务。在三个广泛使用的基准数据集和一个独立数据集上的实验结果表明,NCBRPred 实现了更高的预测结果,交叉预测更低,优于 10 种现有的最先进的预测器。NCBRPred 的网络服务器和独立软件包可免费在 http://bliulab.net/NCBRPred 上获得。预计 NCBRPred 将成为识别核酸结合残基的非常有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验