Kisslinger Ryan, Riddell Saralyn, Manuel Ajay P, Alam Kazi M, Kalra Aarat P, Cui Kai, Shankar Karthik
Department of Electrical and Computer Engineering, University of Alberta, 9211-116 Street, Edmonton, Alberta T6G 1H9, Canada.
Nanotechnology Research Centre, National Research Council of Canada, Edmonton, Alberta T6G 1H9, Canada.
ACS Appl Mater Interfaces. 2021 Jan 27;13(3):4340-4351. doi: 10.1021/acsami.0c18580. Epub 2021 Jan 17.
We demonstrate the formation of TaO nanodimple arrays on technologically relevant non-native substrates through a simple anodization and annealing process. The anodizing voltage determines the pore diameter (25-60 nm), pore depth (2-9 nm), and rate of anodization (1-2 nm/s of Ta consumed). The formation of Ta dimples after delamination of TaO nanotubes occurs within a range of voltages from 7 to 40 V. The conversion of dimples from Ta into TaO changes the morphology of the nanodimples but does not impact dimple ordering. Electron energy loss spectroscopy indicated an electronic band gap of 4.5 eV and a bulk plasmon band with a maximum of 21.5 eV. Gold nanoparticles (Au NPs) were coated on TaO nanodimple arrays by annealing sputtered Au thin films on Ta nanodimple arrays to simultaneously form Au NPs and convert Ta to TaO. Au NPs produced this way showed a localized surface plasmon resonance maximum at 2.08 eV, red-shifted by ∼0.3 eV from the value in air or on SiO substrates. Lumerical simulations suggest a partial embedding of the Au NPs to explain this magnitude of the red shift. The resulting plasmonic heterojunctions exhibited a significantly higher ensemble-averaged local field enhancement than Au NPs on quartz substrates and demonstrated much higher catalytic activity for the plasmon-driven photo-oxidation of -aminothiophenol to ,'-dimercaptoazobenzene.
我们通过简单的阳极氧化和退火工艺,在与技术相关的非原生衬底上展示了TaO纳米凹坑阵列的形成。阳极氧化电压决定了孔径(25 - 60纳米)、孔深(2 - 9纳米)以及阳极氧化速率(每秒消耗1 - 2纳米的Ta)。TaO纳米管分层后Ta凹坑的形成发生在7至40伏的电压范围内。凹坑从Ta转变为TaO改变了纳米凹坑的形态,但不影响凹坑的有序性。电子能量损失谱表明其电子带隙为4.5电子伏特,体等离子体带最大值为21.5电子伏特。通过在Ta纳米凹坑阵列上对溅射的Au薄膜进行退火,将金纳米颗粒(Au NPs)包覆在TaO纳米凹坑阵列上,从而同时形成Au NPs并将Ta转变为TaO。以这种方式制备的Au NPs在2.08电子伏特处显示出局部表面等离子体共振最大值,相对于在空气或SiO衬底上的值红移了约0.3电子伏特。Lumerical模拟表明Au NPs部分嵌入以解释这种红移幅度。所得的等离子体异质结表现出比石英衬底上的Au NPs显著更高的整体平均局部场增强,并对等离子体驱动的对氨基硫酚光氧化为4,4'-二巯基偶氮苯表现出更高的催化活性。