Suppr超能文献

利用机器学习实现等离子体纳米结构的瞬时特性预测与逆向设计:当前应用与未来方向

Instantaneous Property Prediction and Inverse Design of Plasmonic Nanostructures Using Machine Learning: Current Applications and Future Directions.

作者信息

Xu Xinkai, Aggarwal Dipesh, Shankar Karthik

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.

出版信息

Nanomaterials (Basel). 2022 Feb 14;12(4):633. doi: 10.3390/nano12040633.

Abstract

Advances in plasmonic materials and devices have given rise to a variety of applications in photocatalysis, microscopy, nanophotonics, and metastructures. With the advent of computing power and artificial neural networks, the characterization and design process of plasmonic nanostructures can be significantly accelerated using machine learning as opposed to conventional FDTD simulations. The machine learning (ML) based methods can not only perform with high accuracy and return optical spectra and optimal design parameters, but also maintain a stable high computing efficiency without being affected by the structural complexity. This work reviews the prominent ML methods involved in forward simulation and inverse design of plasmonic nanomaterials, such as Convolutional Neural Networks, Generative Adversarial Networks, Genetic Algorithms and Encoder-Decoder Networks. Moreover, we acknowledge the current limitations of ML methods in the context of plasmonics and provide perspectives on future research directions.

摘要

等离子体材料和器件的进展已在光催化、显微镜、纳米光子学和超结构等领域催生了多种应用。随着计算能力和人工神经网络的出现,与传统的有限时域差分(FDTD)模拟相比,利用机器学习可以显著加速等离子体纳米结构的表征和设计过程。基于机器学习(ML)的方法不仅可以高精度地运行并返回光谱和最佳设计参数,还能保持稳定的高计算效率,不受结构复杂性的影响。本文综述了等离子体纳米材料正向模拟和逆向设计中涉及的主要ML方法,如卷积神经网络、生成对抗网络、遗传算法和编码器 - 解码器网络。此外,我们认识到ML方法在等离子体领域当前的局限性,并对未来的研究方向提出了展望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55ec/8874423/be91418c24a4/nanomaterials-12-00633-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验