Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, Georgia 30332, United States.
ACS Biomater Sci Eng. 2020 Sep 14;6(9):5084-5095. doi: 10.1021/acsbiomaterials.0c00960. Epub 2020 Aug 28.
Intra-articular (IA) injection is an attractive route of administration for the treatment of osteoarthritis (OA). However, free drugs injected into the joint space are rapidly cleared and many of them can induce adverse off-target effects on different IA tissues. To overcome these limitations, we designed nanocomposite 4-arm-poly(ethylene glycol)-maleimide (PEG-4MAL) microgels, presenting cartilage- or synoviocyte-binding peptides, containing poly(lactic--glycolic) acid (PLGA) nanoparticles (NPs) as an IA small molecule drug delivery system. Microgels containing rhodamine B (model drug)-loaded PLGA NPs were synthesized using microfluidics technology and exhibited a sustained, near zero-order release of the fluorophore over 16 days . PEG-4MAL microgels presenting synoviocyte- or cartilage-targeting peptides specifically bound to rabbit and human synoviocytes or to bovine articular cartilage , respectively. Finally, using a rat model of post-traumatic knee OA, PEG-4MAL microgels were shown to be retained in the joint space for at least 3 weeks without inducing any joint degenerative changes as measured by EPIC-μCT and histology. Additionally, all microgel formulations were found trapped in the synovial membrane and significantly increased the IA retention time of a model small molecule near-infrared (NIR) dye compared to that of the free dye. These results suggest that peptide-functionalized nanocomposite PEG-4MAL microgels represent a promising intra-articular vehicle for tissue-localized drug delivery and prolonged IA drug retention for the treatment of OA.
关节内(IA)注射是治疗骨关节炎(OA)的一种有吸引力的给药途径。然而,注入关节腔的游离药物很快被清除,其中许多药物会对不同的 IA 组织产生不良的非靶向作用。为了克服这些限制,我们设计了纳米复合 4 臂-聚(乙二醇)-马来酰亚胺(PEG-4MAL)微凝胶,其表面呈现软骨或滑膜细胞结合肽,含有聚(乳酸-共-乙醇酸)(PLGA)纳米颗粒(NPs),作为 IA 小分子药物递送系统。使用微流控技术合成了含有罗丹明 B(模型药物)负载的 PLGA NPs 的微凝胶,表现出荧光团的持续、近零级释放,超过 16 天。PEG-4MAL 微凝胶表面呈现滑膜细胞或软骨靶向肽,分别特异性结合兔和人滑膜细胞或牛关节软骨。最后,使用创伤后膝关节 OA 大鼠模型,PEG-4MAL 微凝胶在关节腔内至少保留 3 周,不会引起任何关节退行性变化,如 EPIC-μCT 和组织学测量所示。此外,所有微凝胶制剂都被发现被困在滑膜膜中,并显著增加了模型小分子近红外(NIR)染料在 IA 中的保留时间,与游离染料相比。这些结果表明,肽功能化纳米复合 PEG-4MAL 微凝胶代表了一种有前途的关节内载体,用于组织定位药物递送和延长 OA 的 IA 药物保留时间。