Suppr超能文献

高强度纤维增强复合水凝胶支架作为生物合成肌腱移植材料

High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material.

作者信息

No Young Jung, Tarafder Solaiman, Reischl Barbara, Ramaswamy Yogambha, Dunstan Colin, Friedrich Oliver, Lee Chang Hun, Zreiqat Hala

机构信息

Biomaterials and Tissue Engineering Research Unit, School of Biomedical Engineering, University of Sydney, Sydney 2006, Australia.

Australian Research Council Training Centre for Innovative BioEngineering, Sydney 2006, Australia.

出版信息

ACS Biomater Sci Eng. 2020 Apr 13;6(4):1887-1898. doi: 10.1021/acsbiomaterials.9b01716. Epub 2020 Apr 1.

Abstract

The development of suitable synthetic scaffolds for use as human tendon grafts to repair tendon ruptures remains a significant engineering challenge. Previous synthetic tendon grafts have demonstrated suboptimal tissue ingrowth and synovitis due to wear particles from fiber-to-fiber abrasion. In this study, we present a novel fiber-reinforced hydrogel (FRH) that mimics the hierarchical structure of the native human tendon for synthetic tendon graft material. Ultrahigh molecular weight polyethylene (UHMWPE) fibers were impregnated with either biosynthetic polyvinyl alcohol/gelatin hydrogel (FRH-PG) or with polyvinyl alcohol/gelatin + strontium-hardystonite (Sr-CaZnSiO, Sr-HT) composite hydrogel (FRH-PGS). The scaffolds were fabricated and assessed to evaluate their suitability for tendon graft applications. The microstructure of both FRH-PG and FRH-PGS showed successful impregnation of the hydrogel component, and the tendon scaffolds exhibited equilibrium water content of ∼70 wt %, similar to the values reported for native human tendon, compared to ∼50 wt % water content retained in unmodified UHMWPE fibers. The tensile strength of FRH-PG and FRH-PGS (77.0-81.8 MPa) matched the range of human Achilles' tendon tensile strengths reported in the literature. In vitro culture of rat tendon stem cells showed cell and tissue infiltration into both FRH-PG and FRH-PGS after 2 weeks, and the presence of Sr-HT ceramic particles influenced the expression of tenogenic markers. On the other hand, FRH-PG supported the proliferation of murine C2C12 myoblasts, whereas FRH-PGS seemingly did not support it under static culture conditions. In vivo implantation of FRH-PG and FRH-PGS scaffolds into full-thickness rat patellar tendon defects showed good collagenous tissue ingrowth into these scaffolds after 6 weeks. This study demonstrates the potential viability for our FRH-PG and FRH-PGS scaffolds to be used for off-the-shelf biosynthetic tendon graft material.

摘要

开发适用于修复肌腱断裂的人工肌腱移植物的合成支架仍然是一项重大的工程挑战。由于纤维间磨损产生的磨损颗粒,先前的合成肌腱移植物表现出不理想的组织长入和滑膜炎。在本研究中,我们提出了一种新型纤维增强水凝胶(FRH),它模仿天然人类肌腱的层次结构作为合成肌腱移植材料。超高分子量聚乙烯(UHMWPE)纤维浸渍有生物合成聚乙烯醇/明胶水凝胶(FRH-PG)或聚乙烯醇/明胶+锶-硬硅钙石(Sr-CaZnSiO,Sr-HT)复合水凝胶(FRH-PGS)。制备并评估了这些支架,以评估它们在肌腱移植应用中的适用性。FRH-PG和FRH-PGS的微观结构均显示水凝胶成分成功浸渍,与未改性的UHMWPE纤维保留的约50 wt%的含水量相比,肌腱支架的平衡含水量约为70 wt%,与天然人类肌腱报道的值相似。FRH-PG和FRH-PGS的拉伸强度(77.0-81.8 MPa)与文献中报道的人类跟腱拉伸强度范围相匹配。大鼠肌腱干细胞的体外培养显示,2周后细胞和组织浸润到FRH-PG和FRH-PGS中,并且Sr-HT陶瓷颗粒的存在影响了成腱标记物的表达。另一方面,FRH-PG支持小鼠C2C12成肌细胞的增殖,而在静态培养条件下,FRH-PGS似乎不支持。将FRH-PG和FRH-PGS支架体内植入大鼠髌腱全层缺损处,6周后显示这些支架中有良好的胶原组织长入。本研究证明了我们的FRH-PG和FRH-PGS支架作为现成的生物合成肌腱移植材料的潜在可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验