Division of Epidemiology & Biostatistics, National Institute of Epidemiology, Indian Council of Medial Research (ICMR), Chennai, Tamil Nadu, India
Department of Biostatistics, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
BMJ Open. 2021 Jan 17;11(1):e040778. doi: 10.1136/bmjopen-2020-040778.
To develop and validate a simple risk scores chart to estimate the probability of poor outcomes in patients with severe head injury (HI).
Retrospective.
Level-1, government-funded trauma centre, India.
Patients with severe HI admitted to the neurosurgery intensive care unit during 19 May 2010-31 December 2011 (n=946) for the model development and further, data from same centre with same inclusion criteria from 1 January 2012 to 31 July 2012 (n=284) for the external validation of the model.
In-hospital mortality and unfavourable outcome at 6 months.
A total of 39.5% and 70.7% had in-hospital mortality and unfavourable outcome, respectively, in the development data set. The multivariable logistic regression analysis of routinely collected admission characteristics revealed that for in-hospital mortality, age (51-60, >60 years), motor score (1, 2, 4), pupillary reactivity (none), presence of hypotension, basal cistern effaced, traumatic subarachnoid haemorrhage/intraventricular haematoma and for unfavourable outcome, age (41-50, 51-60, >60 years), motor score (1-4), pupillary reactivity (none, one), unequal limb movement, presence of hypotension were the independent predictors as its 95% confidence interval (CI) of odds ratio (OR)_did not contain one. The discriminative ability (area under the receiver operating characteristic curve (95% CI)) of the score chart for in-hospital mortality and 6 months outcome was excellent in the development data set (0.890 (0.867 to 912) and 0.894 (0.869 to 0.918), respectively), internal validation data set using bootstrap resampling method (0.889 (0.867 to 909) and 0.893 (0.867 to 0.915), respectively) and external validation data set (0.871 (0.825 to 916) and 0.887 (0.842 to 0.932), respectively). Calibration showed good agreement between observed outcome rates and predicted risks in development and external validation data set (p>0.05).
For clinical decision making, we can use of these score charts in predicting outcomes in new patients with severe HI in India and similar settings.
开发并验证一个简单的风险评分图表,以估计严重颅脑损伤(HI)患者预后不良的概率。
回顾性研究。
印度,一级政府资助的创伤中心。
2010 年 5 月 19 日至 2011 年 12 月 31 日期间因严重 HI 入住神经外科重症监护病房的患者(n=946),用于模型开发,进一步,来自同一中心的相同纳入标准的数据(n=284)用于模型的外部验证。
住院期间死亡率和 6 个月时不良结局。
在发展数据集中,分别有 39.5%和 70.7%的患者发生院内死亡和不良结局。对常规采集的入院特征进行多变量逻辑回归分析显示,院内死亡率与年龄(51-60 岁,>60 岁)、运动评分(1、2、4)、瞳孔反应(无)、低血压、基底池消失、创伤性蛛网膜下腔出血/脑室内积血有关,而不良结局与年龄(41-50 岁、51-60 岁、>60 岁)、运动评分(1-4)、瞳孔反应(无、一个)、肢体运动不等、低血压有关。其 95%置信区间(CI)的比值比(OR)不包含 1,因此这些因素为独立预测因子。评分图表对住院死亡率和 6 个月结局的判别能力(受试者工作特征曲线下面积(95%CI))在发展数据集(分别为 0.890(0.867 至 912)和 0.894(0.869 至 0.918))、内部验证数据集(采用自举重采样法)(分别为 0.889(0.867 至 909)和 0.893(0.867 至 0.915))和外部验证数据集(分别为 0.871(0.825 至 916)和 0.887(0.842 至 0.932))中表现出色。校准表明,在发展和外部验证数据集(p>0.05)中,观察到的结局发生率与预测风险之间具有良好的一致性。
对于临床决策,我们可以在印度和类似环境中使用这些评分图表来预测新的严重 HI 患者的结局。