Suppr超能文献

撒哈拉以南非洲的土壤养分地图:使用机器学习以250米空间分辨率评估土壤养分含量

Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning.

作者信息

Hengl Tomislav, Leenaars Johan G B, Shepherd Keith D, Walsh Markus G, Heuvelink Gerard B M, Mamo Tekalign, Tilahun Helina, Berkhout Ezra, Cooper Matthew, Fegraus Eric, Wheeler Ichsani, Kwabena Nketia A

机构信息

e-mail:

World Agroforestry Centre (ICRAF), Nairobi, Kenya e-mail:

出版信息

Nutr Cycl Agroecosyst. 2017 Aug 2;109(1):77-102. doi: 10.1007/s10705-017-9870-x.

Abstract

Spatial predictions of soil macro and micro-nutrient content across Sub-Saharan Africa at 250 m spatial resolution and for 0-30 cm depth interval are presented. Predictions were produced for 15 target nutrients: organic carbon (C) and total (organic) nitrogen (N), total phosphorus (P), and extractable-phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), sodium (Na), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), aluminum (Al) and boron (B). Model training was performed using soil samples from ca. 59,000 locations (a compilation of soil samples from the AfSIS, EthioSIS, One Acre Fund, VitalSigns and legacy soil data) and an extensive stack of remote sensing covariates in addition to landform, lithologic and land cover maps. An ensemble model was then created for each nutrient from two machine learning algorithms- random forest and gradient boosting, as implemented in R packages ranger and xgboost-and then used to generate predictions in a fully-optimized computing system. Cross-validation revealed that apart from S, P and B, significant models can be produced for most targeted nutrients (R-square between 40-85%). Further comparison with OFRA field trial database shows that soil nutrients are indeed critical for agricultural development, with Mn, Zn, Al, B and Na, appearing as the most important nutrients for predicting crop yield. A limiting factor for mapping nutrients using the existing point data in Africa appears to be (1) the high spatial clustering of sampling locations, and (2) missing more detailed parent material/geological maps. Logical steps towards improving prediction accuracies include: further collection of input (training) point samples, further harmonization of measurement methods, addition of more detailed covariates specific to Africa, and implementation of a full spatiotemporal statistical modeling framework.

摘要

本文展示了撒哈拉以南非洲地区土壤宏量和微量养分含量在250米空间分辨率及0 - 30厘米深度区间的空间预测结果。针对15种目标养分进行了预测:有机碳(C)、总(有机)氮(N)、总磷(P)、有效磷(P)、钾(K)、钙(Ca)、镁(Mg)、硫(S)、钠(Na)、铁(Fe)、锰(Mn)、锌(Zn)、铜(Cu)、铝(Al)和硼(B)。模型训练使用了约59,000个地点的土壤样本(来自非洲土壤信息系统、埃塞俄比亚土壤信息系统、一英亩基金、生命体征项目及传统土壤数据的土壤样本汇编),以及除地形、岩性和土地覆盖图之外的大量遥感协变量。然后,利用R包ranger和xgboost中实现的随机森林和梯度提升这两种机器学习算法,为每种养分创建了一个集成模型,并在一个完全优化的计算系统中用于生成预测结果。交叉验证表明,除了硫、磷和硼之外,大多数目标养分都能构建出显著的模型(决定系数在40% - 85%之间)。与OFRA田间试验数据库的进一步比较表明,土壤养分对农业发展确实至关重要,其中锰、锌、铝、硼和钠是预测作物产量最重要的养分。利用非洲现有点位数据绘制养分图的一个限制因素似乎是:(1)采样地点的高度空间聚集性,以及(2)缺少更详细的母质/地质图。提高预测准确性的合理步骤包括:进一步收集输入(训练)点位样本、进一步统一测量方法、增加更多特定于非洲的详细协变量,以及实施一个完整的时空统计建模框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b0f/7745107/8646a2502707/NCA-109-077-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验