Department of Soil Science and Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
Environ Monit Assess. 2021 Mar 5;193(4):162. doi: 10.1007/s10661-021-08947-w.
Understanding the spatial distribution of soil nutrients and factors affecting their concentration and availability is crucial for soil fertility management and sustainable land utilization while quantifying factors affecting soil nitrogen distribution in Qorveh-Dehgolan plain is mostly lacking. This study, thus, aimed at digital modeling and mapping the spatial distribution of topsoil total nitrogen (TN) in Qorveh-Dehgolan plain with an area of 150,000 ha using random forest (RF), decision tree (DT), and cubist (CB) algorithms. A total of 130 observation points were collected from a depth of 0 to 30 cm from topsoil surfaces based on a random sampling pattern. Then, soil physicochemical properties, calcium carbonate equivalent, organic carbon, and topsoil total nitrogen were measured. A number of 51 environmental variables including 31 geomorphometric attributes derived from a digital elevation model with 12.5-m spatial resolution, 13 spectral indices and reflectance from SENTINEL-2 satellite (MSIsensor), and five soil properties and two spatial variables of latitude and longitude were used as covariates for digital mapping of topsoil total nitrogen. The most appropriate covariates were then selected by the Boruta algorithm in the R software environment. A standard deviation map was produced to show model uncertainty. The covariate selection resulted in the separation of 14 effective covariates in the spatial prediction of topsoil total nitrogen by using the data mining algorithms. The validation of digital mapping of topsoil total nitrogen by RF, DT, and CB models using 20% of independent data showed root mean square error (RMSE) of 0.032, 0.035, and 0.043%; mean absolute error (MAE) of 0.0008, 0.001, and 0.002%; and based on the coefficients of determination of 0.42, 0.38, 0.35, respectively. Relative importance (RI) of environmental covariates using the %IncMSE index indicated the importance of two geomorphometric variables of midslope position and normalized height along with SAVI and NDVI remote sensing variables in the spatial modeling and distribution of total nitrogen in the studied lands. The RF prediction and associated uncertainty maps, with show high accuracy and low standard deviation in the most part of study area, reveled low overfitting and overtraining in soil-landscape modeling; so, this model can lead to the development of a digital map of soil surface properties with acceptable accuracy for sustainable land utilization.
了解土壤养分的空间分布以及影响其浓度和有效性的因素,对于土壤肥力管理和可持续土地利用至关重要。然而,量化影响科尔韦赫-德霍戈兰平原土壤氮分布的因素在很大程度上还缺乏研究。因此,本研究旨在利用随机森林 (RF)、决策树 (DT) 和 Cubist (CB) 算法,对面积为 15 万公顷的科尔韦赫-德霍戈兰平原表层土壤总氮 (TN) 的空间分布进行数字建模和制图。共采集了 130 个观测点,采样深度为 0 至 30cm,采用随机抽样模式。然后,测量了土壤理化性质、碳酸钙当量、有机碳和表层土壤总氮。为了进行表层土壤总氮的数字制图,共使用了 51 个环境变量,包括从空间分辨率为 12.5m 的数字高程模型中提取的 31 个地形地貌属性、来自 Sentinel-2 卫星 (MSIsensor) 的 13 个光谱指数和反射率,以及 5 个土壤属性和 2 个纬度和经度的空间变量。Boruta 算法在 R 软件环境中选择了最合适的协变量。生成标准偏差图以显示模型不确定性。协变量选择导致在使用数据挖掘算法对表层土壤总氮进行空间预测时,分离出 14 个有效协变量。利用 20%的独立数据对 RF、DT 和 CB 模型的表层土壤总氮数字制图进行验证,结果表明,均方根误差 (RMSE) 分别为 0.032、0.035 和 0.043%;平均绝对误差 (MAE) 分别为 0.0008、0.001 和 0.002%;决定系数分别为 0.42、0.38 和 0.35。基于 %IncMSE 指数的环境协变量的相对重要性表明,在研究区域中,两个地形地貌变量中坡位和归一化高度以及 SAVI 和 NDVI 遥感变量在总氮的空间建模和分布中非常重要。RF 预测及其相关不确定性图在研究区域的大部分地区显示出高精度和低标准差,表明在土壤-景观建模中存在低过度拟合和过度训练;因此,该模型可以生成具有可接受精度的土壤表面属性数字地图,以实现可持续土地利用。