Suppr超能文献

基于真实在线双边拍卖的IaaS云多目标权衡动态资源供应

Truthful online double auction based dynamic resource provisioning for multi-objective trade-offs in IaaS clouds.

作者信息

Patel Yashwant Singh, Malwi Zahra, Nighojkar Animesh, Misra Rajiv

机构信息

Department of Computer Science and Engineering, Indian Institute of Technology Patna, Bihar, India.

ValueLabs LLP, Indore, India.

出版信息

Cluster Comput. 2021;24(3):1855-1879. doi: 10.1007/s10586-020-03225-9. Epub 2021 Jan 11.

Abstract

Auction designs have recently been adopted for static and dynamic resource provisioning in IaaS clouds, such as Microsoft Azure and Amazon EC2. However, the existing mechanisms are mostly restricted to simple auctions, single-objective, offline setting, one-sided interactions either among cloud users or cloud service providers (CSPs), and possible misreports of cloud user's private information. This paper proposes a more realistic scenario of online auctioning for IaaS clouds, with the unique characteristics of elasticity for time-varying arrival of cloud user requests under the time-based server maintenance in cloud data centers. We propose an online truthful double auction technique for balancing the multi-objective trade-offs between energy, revenue, and performance in IaaS clouds, consisting of a weighted bipartite matching based winning-bid determination algorithm for resource allocation and a Vickrey-Clarke-Groves (VCG) driven algorithm for payment calculation of winning bids. Through rigorous theoretical analysis and extensive trace-driven simulation studies exploiting Google cluster workload traces, we demonstrate that our mechanism significantly improves the performance while promising truthfulness, heterogeneity, economic efficiency, individual rationality, and has a polynomial-time computational complexity.

摘要

拍卖设计最近已被用于IaaS云(如Microsoft Azure和Amazon EC2)中的静态和动态资源供应。然而,现有机制大多局限于简单拍卖、单目标、离线设置、云用户或云服务提供商(CSP)之间的单边交互,以及云用户私有信息的可能误报。本文提出了一种更现实的IaaS云在线拍卖场景,具有云数据中心基于时间的服务器维护下云用户请求随时间变化到达的弹性这一独特特征。我们提出了一种在线真实双拍卖技术,用于平衡IaaS云中能源、收益和性能之间的多目标权衡,该技术由基于加权二分匹配的中标确定算法用于资源分配,以及由维克瑞-克拉克-格罗夫斯(VCG)驱动的算法用于中标支付计算。通过严格的理论分析和利用谷歌集群工作负载跟踪进行的广泛跟踪驱动模拟研究,我们证明我们的机制在保证真实性、异构性、经济效率、个体合理性的同时显著提高了性能,并且具有多项式时间计算复杂度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c26/7799171/7b4e647e4506/10586_2020_3225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验