Suppr超能文献

用于前列腺癌放射治疗计划的自动磁共振图像分割的验证

Validation of automated magnetic resonance image segmentation for radiation therapy planning in prostate cancer.

作者信息

Kuisma Anna, Ranta Iiro, Keyriläinen Jani, Suilamo Sami, Wright Pauliina, Pesola Marko, Warner Lizette, Löyttyniemi Eliisa, Minn Heikki

机构信息

Turku University Hospital, Department of Oncology and Radiotherapy, Hämeentie 11, FI-20521 Turku, Finland.

Turku University Hospital, Department of Medical Physics, Hämeentie 11, FI-20521 Turku, Finland.

出版信息

Phys Imaging Radiat Oncol. 2020 Mar 13;13:14-20. doi: 10.1016/j.phro.2020.02.004. eCollection 2020 Jan.

Abstract

BACKGROUND AND PURPOSE

Magnetic resonance imaging (MRI) is increasingly used in radiation therapy planning of prostate cancer (PC) to reduce target volume delineation uncertainty. This study aimed to assess and validate the performance of a fully automated segmentation tool (AST) in MRI based radiation therapy planning of PC.

MATERIAL AND METHODS

Pelvic structures of 65 PC patients delineated in an MRI-only workflow according to established guidelines were included in the analysis. Automatic vs manual segmentation by an experienced oncologist was compared with geometrical parameters, such as the dice similarity coefficient (DSC). Fifteen patients had a second MRI within 15 days to assess repeatability of the AST for prostate and seminal vesicles. Furthermore, we investigated whether hormonal therapy or body mass index (BMI) affected the AST results.

RESULTS

The AST showed high agreement with manual segmentation expressed as DSC (mean, SD) for delineating prostate (0.84, 0.04), bladder (0.92, 0.04) and rectum (0.86, 0.04). For seminal vesicles (0.56, 0.17) and penile bulb (0.69, 0.12) the respective agreement was moderate. Performance of AST was not influenced by neoadjuvant hormonal therapy, although those on treatment had significantly smaller prostates than the hormone-naïve patients (p < 0.0001). In repeat assessment, consistency of prostate delineation resulted in mean DSC of 0.89, (SD 0.03) between the paired MRI scans for AST, while mean DSC of manual delineation was 0.82, (SD 0.05).

CONCLUSION

Fully automated MRI segmentation tool showed good agreement and repeatability compared with manual segmentation and was found clinically robust in patients with PC. However, manual review and adjustment of some structures in individual cases remain important in clinical use.

摘要

背景与目的

磁共振成像(MRI)在前列腺癌(PC)放射治疗计划中的应用日益广泛,以减少靶区勾画的不确定性。本研究旨在评估和验证一种全自动分割工具(AST)在基于MRI的PC放射治疗计划中的性能。

材料与方法

分析纳入了65例PC患者的盆腔结构,这些结构是在仅使用MRI的工作流程中按照既定指南勾画的。将经验丰富的肿瘤学家进行的自动分割与手动分割在几何参数方面进行比较,如骰子相似系数(DSC)。15例患者在15天内进行了第二次MRI检查,以评估AST对前列腺和精囊的重复性。此外,我们研究了激素治疗或体重指数(BMI)是否会影响AST的结果。

结果

AST在前列腺(0.84, 0.04)、膀胱(0.92, 0.04)和直肠(0.86, 0.04)勾画方面与手动分割表现出高度一致性(以DSC表示)。对于精囊(0.56, 0.17)和阴茎球部(0.69, 0.12),一致性为中等。AST的性能不受新辅助激素治疗的影响,尽管接受治疗的患者前列腺明显小于未接受激素治疗的患者(p < 0.0001)。在重复评估中,AST在配对MRI扫描之间前列腺勾画的一致性导致平均DSC为0.89(标准差0.03),而手动勾画的平均DSC为0.82(标准差0.05)。

结论

与手动分割相比,全自动MRI分割工具显示出良好的一致性和重复性,并且在PC患者中具有临床稳健性。然而,在临床应用中,个别病例中对某些结构进行手动检查和调整仍然很重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验