Suppr超能文献

基于第一性原理的新型染料设计及染料敏化太阳能电池能量转换效率预测

Novel Dyes Design Based on First Principles and the Prediction of Energy Conversion Efficiencies of Dye-Sensitized Solar Cells.

作者信息

Lin Chundan, Liu Yanbing, Wang Guochen, Li Kuan, Xu Huiying, Zhang Wansong, Shao Changjin, Yang Zhenqing

机构信息

State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas and College of Science, China University of Petroleum, Beijing 102249, P. R. China.

出版信息

ACS Omega. 2020 Dec 28;6(1):715-722. doi: 10.1021/acsomega.0c05240. eCollection 2021 Jan 12.

Abstract

With the depletion of fossil energy, solar energy has gradually attracted people's attention. Dye-sensitized solar cells have developed rapidly in recent years due to their low cost and high conversion efficiency. In this article, based on the theoretical research on the photovoltaic parameters of DSSCs in the early stages of the research team, we have made an accurate prediction of , , and PCE of C286. (The error in our predicted PCE values was 3.33% relative to the experiment.) Also, we further designed a series of new dyes CH1-CH5 by introducing donors and co-acceptors with C286-C288 as the prototype using the DFT/TDDFT method. The PCE of the designed dyes CH2-CH5 exceed the given dye C286, especially the CH3 and CH4 obtained the PCE of 26.2 and 14.5%. This indicates the proposed dyes offer a dramatic improvement on PCE for DSSC devices. Moreover, the designed dyes such as CH3 and CH4 have great potential to be applied to photovoltaic applications, further enabling the design of novel, highly efficient photoactive materials.

摘要

随着化石能源的枯竭,太阳能逐渐引起人们的关注。近年来,染料敏化太阳能电池因其低成本和高转换效率而得到迅速发展。在本文中,基于研究团队早期对染料敏化太阳能电池光伏参数的理论研究,我们对C286的 、 和光电转换效率(PCE)进行了准确预测。(我们预测的PCE值与实验相比误差为3.33%。)此外,我们以C286 - C288为原型,采用密度泛函理论/含时密度泛函理论(DFT/TDDFT)方法引入供体和共受体,进一步设计了一系列新型染料CH1 - CH5。所设计染料CH2 - CH5的PCE超过了给定染料C286,尤其是CH3和CH4的PCE分别达到了26.2%和14.5%。这表明所提出的染料在染料敏化太阳能电池器件的PCE方面有显著提高。此外,所设计的染料如CH3和CH4在光伏应用方面具有很大的应用潜力,进一步推动了新型高效光活性材料的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验