Olademehin Olatunde P, Kim Sung Joon, Shuford Kevin L
Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States.
Department of Chemistry, Howard University, Washington, District of Columbia 20059, United States.
ACS Omega. 2020 Dec 22;6(1):775-785. doi: 10.1021/acsomega.0c05353. eCollection 2021 Jan 12.
Vancomycin is a glycopeptide antibiotic produced by used to treat serious infections by Gram-positive pathogens including methicillin-resistant . Vancomycin inhibits cell wall biosynthesis by targeting lipid II, which is the membrane-bound peptidoglycan precursor. The heptapeptide aglycon structure of vancomycin binds to the d-Ala-d-Ala of the pentapeptide stem structure in lipid II. The third residue of vancomycin aglycon is asparagine, which is not directly involved in the dipeptide binding. Nonetheless, asparagine plays a crucial role in substrate recognition, as the vancomycin analogue with asparagine substituted by aspartic acid (V) shows a reduction in antibacterial activities. To characterize the function of asparagine, binding of vancomycin and its aspartic-acid-substituted analogue V to l-Lys-d-Ala-d-Ala and l-Lys-d-Ala-d-Lac was investigated using molecular dynamic simulations. Binding interactions were analyzed using root-mean-square deviation (RMSD), two-dimensional (2D) contour plots, hydrogen bond analysis, and free energy calculations of the complexes. The analysis shows that the aspartate substitution introduced a negative charge to the binding cleft of V, which altered the aglycon conformation that minimized the repulsive lone pair interaction in the binding of a depsipeptide. Our findings provide new insight for the development of novel glycopeptide antibiotics against the emerging vancomycin-resistant pathogens by chemical modification at the third residue in vancomycin to improve its binding affinity to the d-Ala-d-Lac-terminated peptidoglycan in lipid II found in vancomycin-resistant enterococci and vancomycin-resistant .
万古霉素是一种由[具体产生菌]产生的糖肽类抗生素,用于治疗由革兰氏阳性病原体引起的严重感染,包括耐甲氧西林的[具体病原体]。万古霉素通过靶向脂质II来抑制细胞壁生物合成,脂质II是膜结合的肽聚糖前体。万古霉素的七肽苷元结构与脂质II中五肽茎结构的d-Ala-d-Ala结合。万古霉素苷元的第三个残基是天冬酰胺,它不直接参与二肽结合。尽管如此,天冬酰胺在底物识别中起关键作用,因为天冬酰胺被天冬氨酸取代的万古霉素类似物(V)显示出抗菌活性降低。为了表征天冬酰胺的功能,使用分子动力学模拟研究了万古霉素及其天冬氨酸取代类似物V与l-Lys-d-Ala-d-Ala和l-Lys-d-Ala-d-Lac的结合。使用均方根偏差(RMSD)、二维(2D)等高线图、氢键分析和复合物的自由能计算来分析结合相互作用。分析表明,天冬氨酸取代给V的结合裂隙引入了负电荷,这改变了苷元构象,使在去甲肽结合中最小化排斥性孤对相互作用。我们的研究结果为开发新型糖肽类抗生素提供了新的见解,通过对万古霉素第三个残基进行化学修饰,以提高其对耐万古霉素肠球菌和耐万古霉素[具体病原体]中脂质II中d-Ala-d-Lac末端肽聚糖的结合亲和力,对抗新出现的耐万古霉素病原体。