Suppr超能文献

治疗前脑连接组指纹图谱可预测重度抑郁症的治疗反应。

Pretreatment Brain Connectome Fingerprint Predicts Treatment Response in Major Depressive Disorder.

作者信息

Fan Siyan, Nemati Samaneh, Akiki Teddy J, Roscoe Jeremy, Averill Christopher L, Fouda Samar, Averill Lynnette A, Abdallah Chadi G

机构信息

National Center for PTSD-Clinical Neuroscience Division, US Department of Veterans Affairs, West Haven, Connecticut.

Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.

出版信息

Chronic Stress (Thousand Oaks). 2020 Dec 29;4:2470547020984726. doi: 10.1177/2470547020984726. eCollection 2020 Jan-Dec.

Abstract

BACKGROUND

Major depressive disorder (MDD) treatment is characterized by low remission rate and often involves weeks to months of treatment. Identification of pretreatment biomarkers of response may play a critical role in novel drug development, in enhanced prognostic predictions, and perhaps in providing more personalized medicine. Using a network restricted strength predictive modeling (NRS-PM) approach, the goal of the current study was to identify pretreatment functional connectome fingerprints (CFPs) that (1) predict symptom improvement regardless of treatment modality and (2) predict treatment specific improvement.

METHODS

Functional magnetic resonance imaging and behavioral data from unmedicated patients with MDD (n = 200) were investigated. Participants were randomized to daily treatment of sertraline or placebo for 8 weeks. NRS-PM with 1000 iterations of 10 cross-validation were implemented to identify brain connectivity signatures that predict percent improvement in depression severity at week-8.

RESULTS

The study identified a pretreatment CFP that significantly predicts symptom improvement independent of treatment modality but failed to identify a treatment specific CFP. Regardless of treatment modality, improved antidepressant response was predicted by high pretreatment connectivity between modules in the default mode network and the rest of the brain, but low external connectivity in the executive network. Moreover, high pretreatment internal nodal connectivity in the bilateral caudate predicted better response.

CONCLUSIONS

The identified CFP may contribute to drug development and ultimately to enhanced prognostic predictions. However, the results do not assist with providing personalized medicine, as pretreatment functional connectivity failed to predict treatment specific response.

摘要

背景

重度抑郁症(MDD)治疗的特点是缓解率低,且通常需要数周甚至数月的治疗。识别治疗前的反应生物标志物可能在新药开发、改善预后预测以及或许在提供更个性化医疗方面发挥关键作用。本研究的目的是使用网络受限强度预测建模(NRS-PM)方法,识别出(1)无论治疗方式如何都能预测症状改善以及(2)能预测特定治疗改善情况的治疗前功能连接组指纹(CFP)。

方法

对未接受药物治疗的MDD患者(n = 200)的功能磁共振成像和行为数据进行了研究。参与者被随机分配接受每日舍曲林或安慰剂治疗,为期8周。实施了具有10次交叉验证、1000次迭代的NRS-PM,以识别能预测第8周时抑郁严重程度改善百分比的脑连接特征。

结果

该研究识别出一种治疗前CFP,它能显著预测症状改善,且与治疗方式无关,但未能识别出特定治疗的CFP。无论治疗方式如何,默认模式网络与大脑其他部分之间治疗前的高连接性以及执行网络中低外部连接性可预测抗抑郁反应的改善。此外,双侧尾状核治疗前的高内部节点连接性预示着更好的反应。

结论

所识别出的CFP可能有助于药物开发,并最终改善预后预测。然而,由于治疗前功能连接未能预测特定治疗反应,这些结果无助于提供个性化医疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验