Institute for Biological Interfaces 1 (IBG-1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany.
Department of Genetics and Cytology, National Research Centre (NRC), 33 El Buhouth St., Cairo, 12622, Egypt.
Small. 2021 Mar;17(10):e2007166. doi: 10.1002/smll.202007166. Epub 2021 Jan 18.
Microfluidic devices can mimic naturally occurring microenvironments and create microbial population heterogeneities ranging from planktonic cells to biofilm states. The exposure of such populations to spatially organized stress gradients can promote their adaptation into complex phenotypes, which are otherwise difficult to achieve with conventional experimental setups. Here a microfluidic chip that employs precise chemical gradients in consecutive microcompartments to perform microbial adaptive laboratory evolution (ALE), a key tool to study evolution in fundamental and applied contexts is described. In the chip developed here, microbial cells can be exposed to a defined profile of stressors such as antibiotics. By modulating this profile, stress adaptation in the chip through resistance or persistence can be specifically controlled. Importantly, chip-based ALE leads to the discovery of previously unknown mutations in Escherichia coli that confer resistance to nalidixic acid. The microfluidic device presented here can enhance the occurrence of mutations employing defined micro-environmental conditions to generate data to better understand the parameters that influence the mechanisms of antibiotic resistance.
微流控装置可以模拟自然发生的微环境,并创建微生物种群异质性,范围从浮游细胞到生物膜状态。将这些种群暴露于空间组织的应力梯度下可以促进它们适应复杂的表型,而这在传统的实验设置中很难实现。这里描述了一种微流控芯片,该芯片在连续的微隔室中采用精确的化学梯度来进行微生物适应性实验室进化(ALE),这是研究基础和应用背景下进化的关键工具。在开发的这种芯片中,可以使微生物细胞暴露于抗生素等特定的压力源。通过调节这种图谱,可以通过抗性或持久性来特异性控制芯片中的压力适应。重要的是,基于芯片的 ALE 导致发现了先前未知的大肠杆菌突变,这些突变赋予了对萘啶酸的抗性。这里提出的微流控装置可以通过采用明确定义的微环境条件来增强突变的发生,从而生成数据,以更好地了解影响抗生素抗性机制的参数。