Suppr超能文献

用于解码环境微生物群落中微生物暗物质的大孔硅胶芯片

Macroporous Silicone Chips for Decoding Microbial Dark Matter in Environmental Microbiomes.

作者信息

Zoheir Ahmed E, Meisch Laura, Martín Marta Velaz, Bickmann Christoph, Kiselev Alexei, Lenk Florian, Kaster Anne-Kristin, Rabe Kersten S, Niemeyer Christof M

机构信息

Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

Biotechnology Research Institute, Department of Genetics and Cytology, National Research Centre (NRC), 33 El Buhouth St., Dokki, 12622 Cairo, Egypt.

出版信息

ACS Appl Mater Interfaces. 2022 Oct 26;14(44):49592-603. doi: 10.1021/acsami.2c15470.

Abstract

Natural evolution has produced an almost infinite variety of microorganisms that can colonize almost any conceivable habitat. Since the vast majority of these microbial consortia are still unknown, there is a great need to elucidate this "microbial dark matter" (MDM) to enable exploitation in biotechnology. We report the fabrication and application of a novel device that integrates a matrix of macroporous elastomeric silicone foam (MESIF) into an easily fabricated and scalable chip design that can be used for decoding MDM in environmental microbiomes. Technical validation, performed with the model organism expressing a fluorescent protein, showed that this low-cost, bioinert, and widely modifiable chip is rapidly colonized by microorganisms. The biological potential of the chip was then illustrated through targeted sampling and enrichment of microbiomes in a variety of habitats ranging from wet, turbulent moving bed biofilters and wastewater treatment plants to dry air-based environments. Sequencing analyses consistently showed that MESIF chips are not only suitable for sampling with high robustness but also that the material can be used to detect a broad cross section of microorganisms present in the habitat in a short time span of a few days. For example, results from the biofilter habitat showed efficient enrichment of microorganisms belonging to the enigmatic , which comprise ∼70% of the MDM. From dry air, the MESIF chip was able to enrich a variety of members of , which is known to produce specific secondary metabolites. Targeted sampling from a wastewater treatment plant where the herbicide glyphosate was added to the chip's reservoir resulted in enrichment of and , previously associated with glyphosate degradation. These initial case studies suggest that this chip is very well suited for the systematic study of MDM and opens opportunities for the cultivation of previously unculturable microorganisms.

摘要

自然进化产生了几乎无穷多样的微生物,它们能够在几乎任何可以想象到的栖息地定殖。由于这些微生物群落中的绝大多数仍然未知,因此迫切需要阐明这种“微生物暗物质”(MDM),以便在生物技术中加以利用。我们报告了一种新型装置的制造和应用,该装置将大孔弹性硅酮泡沫(MESIF)基质集成到易于制造且可扩展的芯片设计中,可用于解码环境微生物群落中的MDM。用表达荧光蛋白的模式生物进行的技术验证表明,这种低成本、生物惰性且可广泛修饰的芯片能被微生物迅速定殖。然后,通过对从潮湿、湍流移动床生物滤池和废水处理厂到基于干燥空气的环境等各种栖息地的微生物群落进行靶向采样和富集,展示了该芯片的生物学潜力。测序分析一致表明,MESIF芯片不仅适用于具有高稳健性的采样,而且该材料可用于在短短几天的时间内检测栖息地中存在的广泛微生物种类。例如,生物滤池栖息地的结果显示,属于神秘类群的微生物得到了有效富集,该类群占MDM的约70%。从干燥空气中,MESIF芯片能够富集多种已知能产生特定次生代谢物的类群的成员。在芯片储液器中添加除草剂草甘膦的废水处理厂进行靶向采样,结果富集了先前与草甘膦降解相关的类群。这些初步的案例研究表明,这种芯片非常适合对MDM进行系统研究,并为培养以前无法培养的微生物提供了机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f40/9650684/9bfdda92c0f6/am2c15470_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验