Suppr超能文献

放射组学特征分布的一致性:对CT成像中肝组织分类的影响

Harmonization of radiomic feature distributions: impact on classification of hepatic tissue in CT imaging.

作者信息

Beaumont Hubert, Iannessi Antoine, Bertrand Anne-Sophie, Cucchi Jean Michel, Lucidarme Olivier

机构信息

Median Technologies, 06560, Valbonne, France.

Centre Antoine Lacassagne, 06100, Nice, France.

出版信息

Eur Radiol. 2021 Aug;31(8):6059-6068. doi: 10.1007/s00330-020-07641-8. Epub 2021 Jan 18.

Abstract

OBJECTIVES

Following the craze for radiomic features (RF), their lack of reliability raised the question of the generalizability of classification models. Inter-site harmonization of images therefore becomes a central issue. We compared RF harmonization processing designed to detect liver diseases in CT images.

METHODS

We retrospectively analyzed 76 multi-center portal CT series of non-diseased (NDL) and diseased liver (DL) patients. In each series, we positioned volumes of interest in spleen and liver, then extracted 9 RF (histogram and texture). We evaluated two RF harmonization approaches. First, in each series, we computed the Z-score of liver measurements based on those computed in the spleen. Second, we evaluated the ComBat method according to each imaging center; parameters were computed in the spleen and applied to the liver. We compared RF distributions and classification performances before/after harmonization. We classified NDL versus spleen and versus DL tissues.

RESULTS

The RF distributions were all different between liver and spleen (p < 0.05). The Z-score harmonization outperformed for the detection of liver versus spleen: AUC = 93.1% (p < 0.001). For the detection of DL versus NDL, in a case/control setting, we found no differences between the harmonizations: mean AUC = 73.6% (p = 0.49). Using the whole datasets, the performances were improved using ComBat (p = 0.05) AUC = 82.4% and degraded with Z-score AUC = 67.4% (p = 0.008).

CONCLUSIONS

Data harmonization requires to first focus on data structuring to not degrade the performances of subsequent classifications. Liver tissue classification after harmonization of spleen-based RF is a promising strategy for improving the detection of DL tissue.

KEY POINTS

• Variability of acquisition parameter makes radiomics of CT features non-reproducible. • Data harmonization can help circumvent the inter-site variability of acquisition protocols. • Inter-site harmonization must be carefully implemented and requires designing consistent data sets.

摘要

目的

随着对放射组学特征(RF)的狂热,其可靠性的缺乏引发了分类模型可推广性的问题。因此,图像的跨站点协调成为一个核心问题。我们比较了旨在检测CT图像中肝脏疾病的RF协调处理方法。

方法

我们回顾性分析了76例非疾病(NDL)和患病肝脏(DL)患者的多中心门静脉CT系列。在每个系列中,我们在脾脏和肝脏中定位感兴趣的体积,然后提取9个RF(直方图和纹理)。我们评估了两种RF协调方法。首先,在每个系列中,我们根据在脾脏中计算的测量值计算肝脏测量值的Z分数。其次,我们根据每个成像中心评估ComBat方法;在脾脏中计算参数并应用于肝脏。我们比较了协调前后的RF分布和分类性能。我们将NDL与脾脏以及与DL组织进行分类。

结果

肝脏和脾脏之间的RF分布均不同(p < 0.05)。Z分数协调在检测肝脏与脾脏方面表现更优:AUC = 93.1%(p < 0.001)。对于在病例/对照设置中检测DL与NDL,我们发现协调方法之间没有差异:平均AUC = 73.6%(p = 0.49)。使用整个数据集,使用ComBat时性能得到改善(p = 0.05),AUC = 82.4%,而使用Z分数时性能下降,AUC = 67.4%(p = 0.008)。

结论

数据协调首先需要关注数据结构,以免降低后续分类的性能。基于脾脏的RF协调后的肝脏组织分类是改善DL组织检测的一种有前景的策略。

关键点

• 采集参数的变异性使得CT特征的放射组学不可重复。• 数据协调有助于规避采集协议的跨站点变异性。• 跨站点协调必须谨慎实施,并且需要设计一致的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验