Suppr超能文献

协调的作用:对各种基于任务的场景的系统分析。

The Role of Harmonization: A Systematic Analysis of Various Task-based Scenarios.

作者信息

Xia Shao-Jun, Vancoillie Liesbeth, Sotoudeh-Paima Saman, Zarei Mojtaba, Ho Fong Chi, Tushar Fakrul Islam, Chen Xiaoyang, Dahal Lavsen, Lafata Kyle J, Abadi Ehsan, Lo Joseph Y, Samei Ehsan

机构信息

Center for Virtual Imaging Trials, Carl E. Ravin Advanced Imaging Labs, Department of Radiology, Duke University, Durham, USA.

Department of Biomedical Engineering, Duke University, Durham, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2025 Feb;13405. doi: 10.1117/12.3047096. Epub 2025 Apr 8.

Abstract

In medical imaging, harmonization plays a crucial role in reducing variability arising from diverse imaging devices and protocols. Patient images obtained under different computed tomography (CT) scan conditions may show varying performance when analyzed using an artificial intelligence model or quantitative assessment. This necessitates the need for harmonization. Virtual imaging trial (VIT) through digital simulation can be used to develop and assess the effectiveness of harmonization models to minimize data variability. The purpose of this study was to assess the utility of a VIT platform for harmonization across a range of lung imaging scenarios. To ensure consistent and reliable analysis across different virtual imaging datasets, we conducted a multi-objective assessment encompassing three typical task-based scenarios: lung structure segmentation, chronic obstructive pulmonary disease (COPD) quantification, and lung nodule quantification. A physics-informed deep neural network was applied as the unified harmonization model for all three tasks. Evaluation results before and after harmonization reveal three findings: 1) modestly improved Dice scores and reduced Hausdorff Distances at 95th Percentile in lung structure segmentation; 2) decreased variation in biomarkers and radiomics features in COPD quantification; and 3) increased number of radiomics features with high intraclass correlation coefficient in lung nodule quantification. The results demonstrate the significant potential of harmonization across various task-based scenarios and provide a benchmark for the design of efficient harmonizers.

摘要

在医学成像中,归一化在减少因不同成像设备和协议产生的变异性方面起着至关重要的作用。在不同计算机断层扫描(CT)扫描条件下获得的患者图像,在使用人工智能模型或定量评估进行分析时,可能会表现出不同的性能。这就需要进行归一化。通过数字模拟的虚拟成像试验(VIT)可用于开发和评估归一化模型的有效性,以最小化数据变异性。本研究的目的是评估VIT平台在一系列肺部成像场景中进行归一化的效用。为确保在不同虚拟成像数据集之间进行一致且可靠的分析,我们进行了一项多目标评估,涵盖三个典型的基于任务的场景:肺结构分割、慢性阻塞性肺疾病(COPD)量化和肺结节量化。一个基于物理知识的深度神经网络被用作这三个任务的统一归一化模型。归一化前后的评估结果揭示了三个发现:1)在肺结构分割中,第95百分位数处的Dice分数适度提高,豪斯多夫距离减小;2)在COPD量化中,生物标志物和放射组学特征的变异性降低;3)在肺结节量化中,具有高组内相关系数的放射组学特征数量增加。结果证明了在各种基于任务的场景中进行归一化的巨大潜力,并为高效归一化器的设计提供了一个基准。

相似文献

2
A Physics-Informed Deep Neural Network for Harmonization of CT Images.一种用于CT图像配准的基于物理信息的深度神经网络。
IEEE Trans Biomed Eng. 2024 Dec;71(12):3494-3504. doi: 10.1109/TBME.2024.3428399. Epub 2024 Nov 21.

本文引用的文献

2
A Physics-Informed Deep Neural Network for Harmonization of CT Images.一种用于CT图像配准的基于物理信息的深度神经网络。
IEEE Trans Biomed Eng. 2024 Dec;71(12):3494-3504. doi: 10.1109/TBME.2024.3428399. Epub 2024 Nov 21.
9
Harmonizing CT Images via Physics-based Deep Neural Networks.通过基于物理的深度神经网络实现CT图像的协调
Proc SPIE Int Soc Opt Eng. 2023 Feb;12463. doi: 10.1117/12.2654215. Epub 2023 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验