Suppr超能文献

基于双神经网络的个体化调强放疗质量保证中的误差检测与分类

Error detection and classification in patient-specific IMRT QA with dual neural networks.

作者信息

Potter Nicholas J, Mund Karl, Andreozzi Jacqueline M, Li Jonathan G, Liu Chihray, Yan Guanghua

机构信息

Department of Radiation Oncology, University of Florida, Gainesville, FL, USA.

出版信息

Med Phys. 2020 Oct;47(10):4711-4720. doi: 10.1002/mp.14416. Epub 2020 Aug 13.

Abstract

PURPOSE

Despite being the standard metric in patient-specific quality assurance (QA) for intensity-modulated radiotherapy (IMRT), gamma analysis has two shortcomings: (a) it lacks sensitivity to small but clinically relevant errors (b) it does not provide efficient means to classify the error sources. The purpose of this work is to propose a dual neural network method to achieve simultaneous error detection and classification in patient-specific IMRT QA.

METHODS

For a pair of dose distributions, we extracted the dose difference histogram (DDH) for the low dose gradient region and two signed distance-to-agreement (sDTA) maps (one in x direction and one in y direction) for the high dose gradient region. An artificial neural network (ANN) and a convolutional neural network (CNN) were designed to analyze the DDH and the two sDTA maps, respectively. The ANN was trained to detect and classify six classes of dosimetric errors: incorrect multileaf collimator (MLC) transmission (±1%) and four types of monitor unit (MU) scaling errors (±1% and ±2%). The CNN was trained to detect and classify seven classes of spatial errors: incorrect effective source size, 1 mm MLC leaf bank overtravel or undertravel, 2 mm single MLC leaf overtravel or undertravel, and device misalignment errors (1 mm in x- or y direction). An in-house planar dose calculation software was used to simulate measurements with errors and noise introduced. Both networks were trained and validated with 13 IMRT plans (totaling 88 fields). A fivefold cross-validation technique was used to evaluate their accuracy.

RESULTS

Distinct features were found in the DDH and the sDTA maps. The ANN perfectly identified all four types of MU scaling errors and the specific accuracies for the classes of no error, MLC transmission increase, MLC transmission decrease were 98.9%, 96.6%, and 94.3%, respectively. For the CNN, the largest confusion occurred between the 1-mm-MLC bank overtravel class and the 1-mm-device alignment error in x-direction class, which brought the specific accuracies down to 90.9% and 92.0%, respectively. The specific accuracy for the 2-mm-single MLC leaf undertravel class was 93.2% as it misclassified 5.7% of the class as being error free (false negative). Otherwise, the specific accuracy was above 95%. The overall accuracies across the fivefold were 98.3 ± 0.7% and 95.6% ± 1.5% for the ANN and the CNN, respectively.

CONCLUSIONS

Both the DDH and the sDTA maps are suitable features for error classification in IMRT QA. The proposed dual neural network method achieved simultaneous error detection and classification with excellent accuracy. It could be used in complement with the gamma analysis to potentially shift the IMRT QA paradigm from passive pass/fail analysis to active error detection and root cause identification.

摘要

目的

尽管伽马分析是调强放疗(IMRT)患者特异性质量保证(QA)中的标准度量方法,但它有两个缺点:(a)对微小但具有临床相关性的误差缺乏敏感性;(b)没有提供有效的方法来对误差来源进行分类。本研究的目的是提出一种双神经网络方法,以在患者特异性IMRT QA中实现同时进行误差检测和分类。

方法

对于一对剂量分布,我们提取了低剂量梯度区域的剂量差异直方图(DDH)以及高剂量梯度区域的两个符号化距离一致性(sDTA)图(一个在x方向,一个在y方向)。设计了一个人工神经网络(ANN)和一个卷积神经网络(CNN),分别用于分析DDH和两个sDTA图。训练ANN以检测和分类六类剂量误差:多叶准直器(MLC)传输错误(±1%)和四种类型的监测单元(MU)缩放误差(±1%和±2%)。训练CNN以检测和分类七类空间误差:有效源尺寸错误、1mm MLC叶库超程或欠程、2mm单个MLC叶超程或欠程以及设备对准误差(x或y方向1mm)。使用内部平面剂量计算软件来模拟引入误差和噪声的测量。两个网络均使用13个IMRT计划(共88个射野)进行训练和验证。采用五重交叉验证技术来评估它们的准确性。

结果

在DDH和sDTA图中发现了不同的特征。ANN完美识别了所有四种类型的MU缩放误差,无误差、MLC传输增加、MLC传输减少类别的特异性准确率分别为98.9%、96.6%和94.3%。对于CNN,最大的混淆发生在1mm MLC叶库超程类别和x方向1mm设备对准误差类别之间,这使得特异性准确率分别降至90.9%和92.0%。2mm单个MLC叶欠程类别的特异性准确率为93.2%,因为它将该类别中5.7%误分类为无误差(假阴性)。否则特异性准确率高于95%。ANN和CNN在五重交叉验证中的总体准确率分别为98.3±0.7%和95.6%±1.5%。

结论

DDH和sDTA图都是IMRT QA中误差分类的合适特征。所提出的双神经网络方法实现了同时进行误差检测和分类,且准确率极高。它可与伽马分析互补使用,有可能将IMRT QA模式从被动的通过/失败分析转变为主动的误差检测和根本原因识别。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验