Suppr超能文献

基于深度学习的容积调强弧形治疗患者特定质量保证中无需误差剂量图的误差检测系统的开发。

Development of a deep learning-based error detection system without error dose maps in the patient-specific quality assurance of volumetric modulated arc therapy.

机构信息

Department of Radiation Oncology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.

Radiation Oncology Center, Ofuna Chuo Hospital, 6-2-24 Ofuna, Kamakura, 247-0056, Japan.

出版信息

J Radiat Res. 2023 Jul 18;64(4):728-737. doi: 10.1093/jrr/rrad028.

Abstract

To detect errors in patient-specific quality assurance (QA) for volumetric modulated arc therapy (VMAT), we proposed an error detection method based on dose distribution analysis using unsupervised deep learning approach and analyzed 161 prostate VMAT beams measured with a cylindrical detector. For performing error simulation, in addition to error-free dose distribution, dose distributions containing nine types of error, including multileaf collimator (MLC) positional errors, gantry rotation errors, radiation output errors and phantom setup errors, were generated. Only error-free data were employed for the model training, and error-free and error data were employed for the tests. As a deep learning model, the variational autoencoder (VAE) was adopted. The anomaly of test data was quantified by calculating Mahalanobis distance based on the feature vectors acquired from a trained encoder. Based on this anomaly, test data were classified as 'error-free' or 'any-error.' For comparison with conventional approaches, gamma (γ)-analysis was performed, and supervised learning convolutional neural network (S-CNN) was constructed. Receiver operating characteristic curves were obtained to evaluate their performance with the area under the curve (AUC). For all error types, except systematic MLC positional and radiation output errors, the performance of the methods was in the order of S-CNN ˃ VAE-based ˃ γ-analysis (only S-CNN required error data for model training). For example, in random MLC positional error simulation, the AUC of our method, S-CNN and γ-analysis were 0.699, 0.921 and 0.669, respectively. Our results showed that the VAE-based method has the potential to detect errors in patient-specific VMAT QA.

摘要

为了检测容积调强弧形治疗(VMAT)的个体化质量保证(QA)中的误差,我们提出了一种基于剂量分布分析的误差检测方法,该方法使用无监督深度学习方法,并分析了 161 例前列腺 VMAT 射束,这些射束是用圆柱形探测器测量的。为了进行误差模拟,除了无误差的剂量分布外,还生成了包含九种误差类型的剂量分布,包括多叶准直器(MLC)位置误差、机架旋转误差、辐射输出误差和体模设置误差。仅使用无误差数据进行模型训练,使用无误差和误差数据进行测试。作为一种深度学习模型,采用变分自编码器(VAE)。通过计算基于从训练编码器获得的特征向量的马氏距离来量化测试数据的异常。基于此异常,将测试数据分类为“无误差”或“任何误差”。为了与传统方法进行比较,进行了伽马(γ)分析,并构建了监督学习卷积神经网络(S-CNN)。获得了接收者操作特性曲线,以通过曲线下面积(AUC)评估它们的性能。除了系统的 MLC 位置和辐射输出误差之外,对于所有误差类型,方法的性能顺序为 S-CNN ˃ VAE 基础 ˃ γ 分析(仅 S-CNN 需要误差数据进行模型训练)。例如,在随机 MLC 位置误差模拟中,我们的方法、S-CNN 和γ分析的 AUC 分别为 0.699、0.921 和 0.669。我们的结果表明,基于 VAE 的方法有可能检测个体化 VMAT QA 中的误差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6500/10354858/ca2c73f6c8bf/rrad028f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验