Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
Biochim Biophys Acta Bioenerg. 2021 May 1;1862(5):148380. doi: 10.1016/j.bbabio.2021.148380. Epub 2021 Jan 16.
Cytochrome bf (cytbf) lies at the heart of the light-dependent reactions of oxygenic photosynthesis, where it serves as a link between photosystem II (PSII) and photosystem I (PSI) through the oxidation and reduction of the electron carriers plastoquinol (PQH) and plastocyanin (Pc). A mechanism of electron bifurcation, known as the Q-cycle, couples electron transfer to the generation of a transmembrane proton gradient for ATP synthesis. Cytbf catalyses the rate-limiting step in linear electron transfer (LET), is pivotal for cyclic electron transfer (CET) and plays a key role as a redox-sensing hub involved in the regulation of light-harvesting, electron transfer and photosynthetic gene expression. Together, these characteristics make cytbf a judicious target for genetic manipulation to enhance photosynthetic yield, a strategy which already shows promise. In this review we will outline the structure and function of cytbf with a particular focus on new insights provided by the recent high-resolution map of the complex from Spinach.
细胞色素 bf(cytbf)位于需氧光合作用的光依赖反应的核心位置,通过氧化和还原电子载体质体醌(PQH)和质体蓝素(Pc),在光系统 II(PSII)和光系统 I(PSI)之间发挥连接作用。一种称为 Q 循环的电子分支机制将电子转移与跨膜质子梯度的产生耦合起来,用于 ATP 合成。细胞色素 bf 催化线性电子转移(LET)的限速步骤,对于循环电子转移(CET)至关重要,并作为涉及光捕获、电子转移和光合作用基因表达调控的氧化还原感应中心发挥关键作用。这些特性使 cytbf 成为遗传操作以提高光合作用产量的明智目标,这一策略已经显示出了前景。在这篇综述中,我们将概述 cytbf 的结构和功能,特别关注最近从菠菜中获得的该复合物高分辨率图谱所提供的新见解。