Milrad Yuval, Wegemann Daniel, Kuhlgert Sebastian, Scholz Martin, Younas Muhammad, Vidal-Meireles André, Hippler Michael
Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany.
Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan.
Plant Physiol. 2025 Aug 4;198(4). doi: 10.1093/plphys/kiaf269.
Plastocyanin (PC) is a copper-containing protein that acts as a mobile electron carrier in plants during photosynthesis. In this work, we investigated the role of PC phosphorylation in photosynthetic electron transfer, focusing on interactions with both cytochrome b6f (Cytb6f) and photosystem I (PSI) in Chlamydomonas reinhardtii. While the binding and electron transfer between PC and PSI are well characterized, the interaction between PC and Cytf remains less clear. Using chemical cross-linking combined with mass-spectrometry, we identified 2 potential binding models for PC and Cytf: "side-on" and "head-on." To evaluate electron transfer, we developed an in vitro system that allowed oxidized PC, formed via light-driven electron transfer at PSI, to reoxidize Cytf. Our data show that a phosphomimetic variant of PC, where phosphorylated PC S49 residue interacts with PetA-K188, displays faster Cytf oxidation, likely optimizing binding and electron transfer between PC and Cytf. Additionally, PC phosphomimetic variants exhibited slower transfer rates than the wild type, suggesting that phosphorylation also modulates PC's interaction with PSI. This regulation likely optimizes Cytf oxidation and electron transfer under conditions of low PC availability, such as during high light stress. Overall, PC phosphorylation appears to play a role in fine-tuning electron transfer between PSI, Cytb6f, and PC, thereby ensuring efficient photosynthesis in dynamic environmental conditions.
质体蓝素(PC)是一种含铜蛋白,在植物光合作用过程中作为移动电子载体发挥作用。在这项工作中,我们研究了PC磷酸化在光合电子传递中的作用,重点关注莱茵衣藻中PC与细胞色素b6f(Cytb6f)和光系统I(PSI)之间的相互作用。虽然PC与PSI之间的结合和电子传递已得到充分表征,但PC与细胞色素f(Cytf)之间的相互作用仍不太清楚。我们使用化学交联结合质谱法,确定了PC与Cytf的2种潜在结合模式:“侧对”和“头对”。为了评估电子传递,我们开发了一种体外系统,该系统允许通过PSI处的光驱动电子传递形成的氧化态PC使Cytf重新氧化。我们的数据表明,PC的磷酸模拟变体(其中磷酸化的PC S49残基与PetA-K188相互作用)显示出更快的Cytf氧化,这可能优化了PC与Cytf之间的结合和电子传递。此外,PC磷酸模拟变体的传递速率比野生型慢,这表明磷酸化也调节了PC与PSI的相互作用。这种调节可能在低PC可用性条件下(例如在高光胁迫期间)优化Cytf氧化和电子传递。总体而言,PC磷酸化似乎在微调PSI、Cytb6f和PC之间的电子传递中发挥作用,从而确保在动态环境条件下进行高效光合作用。