Qin Liyuan, Yang Dongzhi, Zhang Ming, Zhao Tianyu, Luo Zhuo, Yu Zhong-Zhen
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
J Colloid Interface Sci. 2021 May;589:264-274. doi: 10.1016/j.jcis.2020.12.102. Epub 2020 Dec 31.
As ultralight and superelastic aerogels are quite desirable for pressure sensing and energy storage applications, superelastic and ultralight carbon nanofiber (CNF)/transition metal carbides and carbonitrides (MXenes) hybrid aerogels with anisotropic microchannels are thus fabricated by liquid nitrogen-assisted unidirectional-freezing followed by freeze-drying. The CNFs with high aspect ratios entangle and assemble into the interconnected scaffolds, while the MXene sheets enhance structural stability of the framework of CNFs and endow the aerogels with satisfactory electronic conductivities. Benefiting from the stable architecture with orientated microchannels, the CNF/MXene aerogel (CNF/MX) with an ultralow density of 4.87 mg cm exhibits superb compressible resilience at the strain of 50% for at least 5000 cycles and a high strain of 95% for 500 cycles. Importantly, the outstanding strain- or pressure-responses endow the CNF/MX aerogel sensor with high sensitivity (65 kPa), ultralow detection limit (<5 Pa), rapid response (26 ms), large workable strain range (0-95%), and superb response stability. Furthermore, the presence of MXene with excellent electrochemical activity makes the binder-free CNF/MX electrode exhibit a high rate performance with 80% capacitance retention when the current density increases by 100 times and a high cycling stability with capacitance retention of 90% after 20,000 cycles at 5 A g.
由于超轻且超弹性的气凝胶在压力传感和能量存储应用中非常理想,因此通过液氮辅助单向冷冻然后冷冻干燥制备了具有各向异性微通道的超弹性和超轻碳纳米纤维(CNF)/过渡金属碳化物和氮化物(MXenes)混合气凝胶。具有高纵横比的CNF缠结并组装成相互连接的支架,而MXene片增强了CNF框架的结构稳定性,并使气凝胶具有令人满意的电导率。受益于具有定向微通道的稳定结构,超低密度为4.87 mg cm的CNF/MXene气凝胶(CNF/MX)在50%的应变下至少5000次循环以及在95%的高应变下500次循环时表现出出色的可压缩弹性。重要的是,出色的应变或压力响应赋予CNF/MX气凝胶传感器高灵敏度(65 kPa)、超低检测限(<5 Pa)、快速响应(26 ms)、大的可工作应变范围(0-95%)和出色的响应稳定性。此外,具有优异电化学活性的MXene的存在使无粘结剂的CNF/MX电极在电流密度增加100倍时表现出80%的电容保持率的高倍率性能,以及在5 A g下20000次循环后电容保持率为90%的高循环稳定性。