Vandewiele Gilles, Dehaene Isabelle, Kovács György, Sterckx Lucas, Janssens Olivier, Ongenae Femke, De Backere Femke, De Turck Filip, Roelens Kristien, Decruyenaere Johan, Van Hoecke Sofie, Demeester Thomas
IDLab, Ghent University - imec, Technologiepark-Zwijnaarde 126, Ghent, Belgium.
Department of Gynaecology and Obstetrics, Ghent University Hospital, Corneel Heymanslaan 10, Ghent, Belgium.
Artif Intell Med. 2021 Jan;111:101987. doi: 10.1016/j.artmed.2020.101987. Epub 2020 Nov 20.
Information extracted from electrohysterography recordings could potentially prove to be an interesting additional source of information to estimate the risk on preterm birth. Recently, a large number of studies have reported near-perfect results to distinguish between recordings of patients that will deliver term or preterm using a public resource, called the Term/Preterm Electrohysterogram database. However, we argue that these results are overly optimistic due to a methodological flaw being made. In this work, we focus on one specific type of methodological flaw: applying over-sampling before partitioning the data into mutually exclusive training and testing sets. We show how this causes the results to be biased using two artificial datasets and reproduce results of studies in which this flaw was identified. Moreover, we evaluate the actual impact of over-sampling on predictive performance, when applied prior to data partitioning, using the same methodologies of related studies, to provide a realistic view of these methodologies' generalization capabilities. We make our research reproducible by providing all the code under an open license.
从子宫电描记图记录中提取的信息可能会成为评估早产风险的一个有趣的额外信息来源。最近,大量研究报告称,使用一个名为足月/早产子宫电描记图数据库的公共资源,在区分将足月分娩或早产患者的记录方面取得了近乎完美的结果。然而,我们认为这些结果由于存在方法学缺陷而过于乐观。在这项工作中,我们关注一种特定类型的方法学缺陷:在将数据划分为相互排斥的训练集和测试集之前进行过采样。我们通过两个人工数据集展示了这是如何导致结果产生偏差的,并重现了发现此缺陷的研究结果。此外,我们使用相关研究的相同方法,评估在数据划分之前应用过采样对预测性能的实际影响,以提供这些方法泛化能力的真实情况。我们通过在开放许可下提供所有代码,使我们的研究具有可重复性。