Suppr超能文献

基于电子宫图的先兆早产孕妇即时分娩预测系统的优化。

Optimization of Imminent Labor Prediction Systems in Women with Threatened Preterm Labor Based on Electrohysterography.

机构信息

Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, 46022 Valencia, Spain.

Servicio de Obstetricia, Hospital Universitario y Politécnico de La Fe, 46026 Valencia, Spain.

出版信息

Sensors (Basel). 2021 Apr 3;21(7):2496. doi: 10.3390/s21072496.

Abstract

Preterm birth is the leading cause of death in newborns and the survivors are prone to health complications. Threatened preterm labor (TPL) is the most common cause of hospitalization in the second half of pregnancy. The current methods used in clinical practice to diagnose preterm labor, the Bishop score or cervical length, have high negative predictive values but not positive ones. In this work we analyzed the performance of computationally efficient classification algorithms, based on electrohysterographic recordings (EHG), such as random forest (RF), extreme learning machine (ELM) and K-nearest neighbors (KNN) for imminent labor (<7 days) prediction in women with TPL, using the 50th or 10th-90th percentiles of temporal, spectral and nonlinear EHG parameters with and without obstetric data inputs. Two criteria were assessed for the classifier design: F1-score and sensitivity. RF and ELM provided the highest F1-score values in the validation dataset, (88.17 ± 8.34% and 90.2 ± 4.43%) with the 50th percentile of EHG and obstetric inputs. ELM outperformed RF in sensitivity, being similar to those of ELM (sensitivity optimization). The 10th-90th percentiles did not provide a significant improvement over the 50th percentile. KNN performance was highly sensitive to the input dataset, with a high generalization capability.

摘要

早产是新生儿死亡的主要原因,幸存者易出现健康并发症。早产先兆(TPL)是妊娠后半期住院的最常见原因。目前临床实践中用于诊断早产的方法,如 Bishop 评分或宫颈长度,具有较高的阴性预测值,但阳性预测值不高。在这项工作中,我们分析了基于电子宫记录(EHG)的计算效率高的分类算法的性能,如随机森林(RF)、极限学习机(ELM)和 K-最近邻(KNN),用于预测 TPL 孕妇的即将分娩(<7 天),使用 EHG 的时间、频谱和非线性参数的第 50 个或第 10-90 个百分位,并结合产科数据输入。为分类器设计评估了两个标准:F1 分数和灵敏度。RF 和 ELM 在验证数据集中提供了最高的 F1 分数值,(88.17 ± 8.34%和 90.2 ± 4.43%),使用 EHG 和产科输入的第 50 个百分位。ELM 在灵敏度方面优于 RF,与 ELM 相似(灵敏度优化)。第 10-90 个百分位与第 50 个百分位相比没有显著提高。KNN 的性能对输入数据集非常敏感,具有较高的泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f1a/8038321/ad1afae87830/sensors-21-02496-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验