Centro de Investigación e Innovación en Bioingeniería (CI2B), Universitat Politècnica de València (UPV), Camino de Vera SN, 46022, Valencia, Spain.
Physiol Meas. 2018 Feb 26;39(2):02TR01. doi: 10.1088/1361-6579/aaad56.
Preterm birth (PTB) is one of the most common and serious complications in pregnancy. About 15 million preterm neonates are born every year, with ratios of 10-15% of total births. In industrialized countries, preterm delivery is responsible for 70% of mortality and 75% of morbidity in the neonatal period. Diagnostic means for its timely risk assessment are lacking and the underlying physiological mechanisms are unclear. Surface recording of the uterine myoelectrical activity (electrohysterogram, EHG) has emerged as a better uterine dynamics monitoring technique than traditional surface pressure recordings and provides information on the condition of uterine muscle in different obstetrical scenarios with emphasis on predicting preterm deliveries.
A comprehensive review of the literature was performed on studies related to the use of the electrohysterogram in the PTB context.
This review presents and discusses the results according to the different types of parameter (temporal and spectral, non-linear and bivariate) used for EHG characterization.
Electrohysterogram analysis reveals that the uterine electrophysiological changes that precede spontaneous preterm labor are associated with contractions of more intensity, higher frequency content, faster and more organized propagated activity and stronger coupling of different uterine areas. Temporal, spectral, non-linear and bivariate EHG analyses therefore provide useful and complementary information. Classificatory techniques of different types and varying complexity have been developed to diagnose PTB. The information derived from these different types of EHG parameters, either individually or in combination, is able to provide more accurate predictions of PTB than current clinical methods. However, in order to extend EHG to clinical applications, the recording set-up should be simplified, be less intrusive and more robust-and signal analysis should be automated without requiring much supervision and yield physiologically interpretable results.
This review provides a general background to PTB and describes how EHG can be used to better understand its underlying physiological mechanisms and improve its prediction. The findings will help future research workers to decide the most appropriate EHG features to be used in their analyses and facilitate future clinical EHG applications in order to improve PTB prediction.
早产 (PTB) 是妊娠中最常见和最严重的并发症之一。每年约有 1500 万早产儿出生,占总出生人数的 10-15%。在工业化国家,早产导致新生儿期 70%的死亡率和 75%的发病率。缺乏及时风险评估的诊断手段,其潜在的生理机制也不清楚。子宫肌电活动的表面记录(电子宫图,EHG)已经成为一种比传统表面压力记录更好的子宫动力学监测技术,它提供了不同产科情况下子宫肌肉状况的信息,重点是预测早产。
对与电子宫图在 PTB 背景下使用相关的研究进行了全面的文献回顾。
根据用于 EHG 特征描述的不同类型参数(时变和谱、非线性和双变量),呈现和讨论了本综述的结果。
电子宫图分析表明,自发性早产前子宫电生理变化与更强烈的收缩、更高的频率内容、更快和更有组织的传播活动以及不同子宫区域更强的耦合有关。因此,时变、谱、非线性和双变量 EHG 分析提供了有用且互补的信息。已经开发出不同类型和复杂程度的分类技术来诊断 PTB。这些不同类型的 EHG 参数,无论是单独使用还是组合使用,都能比当前的临床方法更准确地预测 PTB。然而,为了将 EHG 扩展到临床应用,记录设置应该简化,侵入性更小,更稳健-信号分析应该自动化,不需要太多的监督,并产生生理上可解释的结果。
本综述提供了 PTB 的一般背景,并描述了如何使用 EHG 来更好地理解其潜在的生理机制并提高其预测能力。这些发现将有助于未来的研究人员决定在他们的分析中使用最合适的 EHG 特征,并促进未来的临床 EHG 应用,以改善 PTB 的预测。