Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States.
Translational Tissue Engineering Center and Institute for NanoBioTechnology, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States.
ACS Biomater Sci Eng. 2020 May 11;6(5):2943-2955. doi: 10.1021/acsbiomaterials.0c00116. Epub 2020 Apr 17.
Glioblastoma (GBM) is the most devastating brain cancer, and cures remain elusive with currently available neurosurgical, pharmacological, and radiation approaches. While retrovirus- and adenovirus-mediated suicide gene therapy using DNA encoding herpes simplex virus-thymidine kinase (HSV-tk) and prodrug ganciclovir has been suggested as a promising strategy, a nonviral approach for treatment in an orthotopic human primary brain tumor model has not previously been demonstrated. Delivery challenges include nanoparticle penetration through brain tumors, efficient cancer cell uptake, endosomal escape to the cytosol, and biodegradability. To meet these challenges, we synthesized poly(ethylene glycol)-modified poly(beta-amino ester) (PEG-PBAE) polymers to improve extracellular delivery and coencapsulated plasmid DNA with end-modified poly(beta-amino ester) (ePBAE) polymers to improve intracellular delivery as well. We created and evaluated a library of PEG-PBAE/ePBAE nanoparticles (NPs) for effective gene therapy against two independent primary human stem-like brain tumor initiating cells, a putative target to prevent GBM recurrence. The optimally engineered PEG-PBAE/ePBAE NP formulation demonstrated 54 and 82% transfection efficacies in GBM1A and BTIC375 cells respectively, in comparison to 37 and 66% for optimized PBAE NPs without PEG. The leading PEG-PBAE NP formulation also maintained sub-250 nm particle size up to 5 h, while PBAE NPs without PEG showed aggregation over time to micrometer-sized complexes. The comparative advantage demonstrated successfully translated into improved diffusion, with a higher amount of PEG-PBAE NPs penetrating to a distance of 2 mm from the injection site. A significant increase in median survival from 53.5 to 67 days by PEG-PBAE/pHSV-tk NP and systemic ganciclovir treatment compared to a control group in orthotopic murine model of human glioblastoma demonstrates the potential of PEG-PBAE-based NPs as an effective gene therapy platform for the treatment of human brain tumors.
胶质母细胞瘤(GBM)是最具破坏性的脑癌,目前可用的神经外科、药理学和放射方法仍难以治愈。虽然使用编码单纯疱疹病毒胸苷激酶(HSV-tk)和前药更昔洛韦的逆转录病毒和腺病毒介导的自杀基因治疗已被认为是一种很有前途的策略,但以前尚未在原位人原发性脑肿瘤模型中证明非病毒方法的治疗效果。递药挑战包括纳米颗粒穿透脑肿瘤、高效的癌细胞摄取、内体逃逸到细胞质以及生物降解性。为了应对这些挑战,我们合成了聚乙二醇(PEG)修饰的聚(β-氨基酸酯)(PEG-PBAE)聚合物以改善细胞外递药,并用端修饰的聚(β-氨基酸酯)(ePBAE)聚合物共包封质粒 DNA 以改善细胞内递药。我们创建和评估了一系列 PEG-PBAE/ePBAE 纳米颗粒(NPs),以有效进行针对两种独立的人源干细胞样脑肿瘤起始细胞的基因治疗,这是预防 GBM 复发的一个潜在靶点。与不含 PEG 的优化 PBAE NPs 的 37%和 66%相比,优化的 PEG-PBAE/ePBAE NP 制剂在 GBM1A 和 BTIC375 细胞中的转染效率分别为 54%和 82%。具有领先优势的 PEG-PBAE NP 制剂在长达 5 小时内仍保持亚 250nm 的粒径,而不含 PEG 的 PBAE NPs 随时间推移会聚集到微米级复合物。与对照组相比,在原位人胶质母细胞瘤的小鼠模型中,PEG-PBAE/pHSV-tk NP 和全身更昔洛韦治疗使中位生存期从 53.5 天显著增加到 67 天,这表明 PEG-PBAE 纳米颗粒作为治疗人类脑肿瘤的有效基因治疗平台具有潜力。
J Control Release. 2017-7-8
Signal Transduct Target Ther. 2025-4-30
Asian J Pharm Sci. 2025-2
Curr Gene Ther. 2025
Biomedicines. 2024-8-11
Mater Today Bio. 2024-5-29
Nanoscale. 2019-10-15
J Gene Med. 2018-4-19