Suppr超能文献

使用密度拟合和连续快速多极子方法的实时含时密度泛函理论

Real-time time-dependent density functional theory using density fitting and the continuous fast multipole method.

作者信息

Müller Carolin, Sharma Manas, Sierka Marek

机构信息

Otto Schott Institute of Materials Research, Friedrich Schiller University of Jena, Jena, Germany.

出版信息

J Comput Chem. 2020 Nov 15;41(30):2573-2582. doi: 10.1002/jcc.26412. Epub 2020 Sep 10.

Abstract

An implementation of real-time time-dependent density functional theory (RT-TDDFT) within the TURBOMOLE program package is reported using Gaussian-type orbitals as basis functions, second and fourth order Magnus propagator, and the self-consistent field as well as the predictor-corrector time integration schemes. The Coulomb contribution to the Kohn-Sham matrix is calculated combining density fitting approximation and the continuous fast multipole method. Performance of the implementation is benchmarked for molecular systems with different sizes and dimensionalities. For linear alkane chains, the wall time for density matrix time propagation step is comparable to the Kohn-Sham (KS) matrix construction. However, for larger two- and three-dimensional molecules, with up to about 5,000 basis functions, the computational effort of RT-TDDFT calculations is dominated by the KS matrix evaluation. In addition, the maximum time step is evaluated using a set of small molecules of different polarities. The photoabsorption spectra of several molecular systems calculated using RT-TDDFT are compared to those obtained using linear response time-dependent density functional theory and coupled cluster methods.

摘要

报道了在TURBOMOLE程序包中实现实时含时密度泛函理论(RT-TDDFT),使用高斯型轨道作为基函数、二阶和四阶马格努斯传播子,以及自洽场和预测-校正时间积分方案。库仑对科恩-沙姆矩阵的贡献通过结合密度拟合近似和连续快速多极子方法来计算。该实现的性能针对不同尺寸和维度的分子系统进行了基准测试。对于线性烷烃链,密度矩阵时间传播步骤的运行时间与科恩-沙姆(KS)矩阵构建的时间相当。然而,对于具有多达约5000个基函数的更大的二维和三维分子,RT-TDDFT计算的计算量主要由KS矩阵评估主导。此外,使用一组不同极性的小分子评估了最大时间步长。将使用RT-TDDFT计算的几个分子系统的光吸收光谱与使用线性响应含时密度泛函理论和耦合簇方法获得的光谱进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验