Becker Martin, Sierka Marek
Otto-Schott-Institut für Materialforschung, Friedrich-Schiller-Universität Jena, Löbdergraben 32, Jena, D-07743, Germany.
J Comput Chem. 2019 Nov 5;40(29):2563-2570. doi: 10.1002/jcc.26033. Epub 2019 Jul 19.
A full implementation of the analytical stress tensor for periodic systems is reported in the TURBOMOLE program package within the framework of Kohn-Sham density functional theory using Gaussian-type orbitals as basis functions. It is the extension of the implementation of analytical energy gradients (Lazarski et al., Journal of Computational Chemistry 2016, 37, 2518-2526) to the stress tensor for the purpose of optimization of lattice vectors. Its key component is the efficient calculation of the Coulomb contribution by combining density fitting approximation and continuous fast multipole method. For the exchange-correlation (XC) part the hierarchical numerical integration scheme (Burow and Sierka, Journal of Chemical Theory and Computation 2011, 7, 3097-3104) is extended to XC weight derivatives and stress tensor. The computational efficiency and favorable scaling behavior of the stress tensor implementation are demonstrated for various model systems. The overall computational effort for energy gradient and stress tensor for the largest systems investigated is shown to be at most two and a half times the computational effort for the Kohn-Sham matrix formation. © 2019 Wiley Periodicals, Inc.
在Kohn-Sham密度泛函理论框架内,使用高斯型轨道作为基函数,TURBOMOLE程序包中报告了周期系统解析应力张量的完整实现。它是将解析能量梯度的实现(Lazarski等人,《计算化学杂志》2016年,37卷,2518 - 2526页)扩展到应力张量,以用于晶格向量的优化。其关键组成部分是通过结合密度拟合近似和连续快速多极子方法来高效计算库仑贡献。对于交换关联(XC)部分,分层数值积分方案(Burow和Sierka,《化学理论与计算杂志》2011年,7卷,3097 - 3104页)被扩展到XC权重导数和应力张量。针对各种模型系统展示了应力张量实现的计算效率和良好的缩放行为。对于所研究的最大系统,能量梯度和应力张量的总体计算量最多为Kohn-Sham矩阵形成计算量的两倍半。© 2019威利期刊公司