Gasparotto Piero, Fischer Maria, Scopece Daniele, Liedke Maciej O, Butterling Maik, Wagner Andreas, Yildirim Oguz, Trant Mathis, Passerone Daniele, Hug Hans J, Pignedoli Carlo A
nanotech@surfaces Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129, 8600 Dübendorf, Switzerland.
Laboratory for Magnetic and Functional Thin Films, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland.
ACS Appl Mater Interfaces. 2021 Feb 3;13(4):5762-5771. doi: 10.1021/acsami.0c19270. Epub 2021 Jan 19.
Machine learning is changing how we design and interpret experiments in materials science. In this work, we show how unsupervised learning, combined with random structure searching, improves our understanding of structural metastability in multicomponent alloys. We focus on the case of Al-O-N alloys where the formation of aluminum vacancies in wurtzite AlN upon the incorporation of substitutional oxygen can be seen as a general mechanism of solids where crystal symmetry is reduced to stabilize defects. The ideal AlN wurtzite crystal structure occupation cannot be matched due to the presence of an aliovalent hetero-element into the structure. The traditional interpretation of the -lattice shrinkage in sputter-deposited Al-O-N films from X-ray diffraction (XRD) experiments suggests the existence of a solubility limit at 8 at % oxygen content. Here, we show that such naive interpretation is misleading. We support XRD data with accurate modeling and dimensionality reduction on advanced structural descriptors to map structure-property relationships. No signs of a possible solubility limit are found. Instead, the presence of a wide range of non-equilibrium oxygen-rich defective structures emerging at increasing oxygen contents suggests that the formation of grain boundaries is the most plausible mechanism responsible for the lattice shrinkage measured in Al-O-N sputtered films. We further confirm our hypothesis using positron annihilation lifetime spectroscopy.
机器学习正在改变我们在材料科学中设计和解释实验的方式。在这项工作中,我们展示了无监督学习与随机结构搜索相结合,如何增进我们对多组分合金中结构亚稳性的理解。我们聚焦于Al-O-N合金的情况,在纤锌矿型AlN中掺入替代氧时铝空位的形成可被视为晶体对称性降低以稳定缺陷的固体的一种普遍机制。由于结构中存在异价杂元素,理想的AlN纤锌矿晶体结构占有率无法匹配。X射线衍射(XRD)实验对溅射沉积的Al-O-N薄膜中晶格收缩的传统解释表明,在氧含量为8原子百分比时存在溶解度极限。在此,我们表明这种简单的解释具有误导性。我们通过对先进结构描述符进行精确建模和降维来支持XRD数据,以绘制结构-性能关系图。未发现可能存在溶解度极限的迹象。相反,随着氧含量增加出现的各种非平衡富氧缺陷结构表明,晶界的形成是导致Al-O-N溅射薄膜中晶格收缩的最合理机制。我们使用正电子湮没寿命谱进一步证实了我们的假设。