Stomatological Hospital of Tianjin Medical University, 12 Qixiangtai Road, Heping District, Tianjin 300070, People's Republic of China.
Department of Spine Surgery, Tianjin Hospital, Tianjin University, 406 Jiefang Nan Road, Hexi District, Tianjin 300211, People's Republic of China.
ACS Biomater Sci Eng. 2020 Feb 10;6(2):1208-1216. doi: 10.1021/acsbiomaterials.9b01661. Epub 2020 Jan 10.
The repair of osteochondral defects remains challenging, given the complexity of native osteochondral tissue and the limited self-repair capacity of cartilage. Osteochondral tissue engineering is a promising strategy. Here, we fabricated a biomimetic osteochondral scaffold using silk fibroin and hydroxyapatite, including a calcified cartilage layer (CCL). We studied the role played by the CCL in terms of cell viability in vivo. We established osteochondral defects in rabbit knees to investigate the effects of CCL-containing scaffolds with or without adipose tissue-derived stem cells (ADSCs). We evaluated osteochondral tissue regeneration by calculating gross observational scores, via histological and immunohistochemical assessments, by performing quantitative biochemical and biomechanical analyses of new osteochondral tissue, and via microcomputed tomography of new bone at 4, 8, and 12 weeks after surgery. In terms of surface roughness and integrity, the CCL + ADSCs group was better than the CCL and the non-CCL + ADSCs groups at all time points tested; the glycosaminoglycan and collagen type II levels of the CCL + ADSCs group were highest, reflecting the important role played by the CCL in cartilage tissue repair. Subchondral bone smoothness was better in the CCL + ADSCs group than in the non-CCL + ADSCs and CCL groups. The CCL promoted smooth subchondral bone regeneration but did not obviously affect bone strength or quality. In conclusion, a biomimetic osteochondral scaffold with a CCL, combined with autologous ADSCs, satisfactorily regenerated a rabbit osteochondral defect. The CCL enhances cartilage and subchondral bone regeneration.
骨软骨缺损的修复仍然具有挑战性,因为其涉及到复杂的天然骨软骨组织和有限的软骨自我修复能力。骨软骨组织工程是一种很有前途的策略。在这里,我们使用丝素蛋白和羟基磷灰石制造了一种仿生骨软骨支架,包括钙化软骨层(CCL)。我们研究了 CCL 在体内细胞活力方面的作用。我们在兔膝关节中建立了骨软骨缺损模型,以研究含有或不含有脂肪组织来源的干细胞(ADSCs)的 CCL 支架的作用。我们通过计算大体观察评分、组织学和免疫组织化学评估、对新骨软骨组织进行定量生化和生物力学分析以及手术后 4、8 和 12 周时的新骨微计算机断层扫描,来评估骨软骨组织再生。在表面粗糙度和完整性方面,在所有测试时间点,CCL+ADSCs 组均优于 CCL 组和非 CCL+ADSCs 组;CCL+ADSCs 组的糖胺聚糖和 II 型胶原水平最高,这反映了 CCL 在软骨组织修复中的重要作用。CCL+ADSCs 组的软骨下骨平整度优于非 CCL+ADSCs 组和 CCL 组。CCL 促进了软骨下骨的平滑再生,但对骨强度或质量没有明显影响。总之,带有 CCL 的仿生骨软骨支架与自体 ADSCs 结合,可令人满意地再生兔骨软骨缺损。CCL 增强了软骨和软骨下骨的再生。