文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives.

作者信息

Barui Srimanta, Ghosh Debolina, Laurencin Cato T

机构信息

Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA.

Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.

出版信息

Regen Biomater. 2022 Dec 26;10:rbac109. doi: 10.1093/rb/rbac109. eCollection 2023.


DOI:10.1093/rb/rbac109
PMID:36683736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9845524/
Abstract

Despite quantum leaps, the biomimetic regeneration of cartilage and osteochondral regeneration remains a major challenge, owing to the complex and hierarchical nature of compositional, structural and functional properties. In this review, an account of the prevailing challenges in biomimicking the gradients in porous microstructure, cells and extracellular matrix (ECM) orientation is presented. Further, the spatial arrangement of the cues in inducing vascularization in the subchondral bone region while maintaining the avascular nature of the adjacent cartilage layer is highlighted. With rapid advancement in biomaterials science, biofabrication tools and strategies, the state-of-the-art in osteochondral regeneration since the last decade has expansively elaborated. This includes conventional and additive manufacturing of synthetic/natural/ECM-based biomaterials, tissue-specific/mesenchymal/progenitor cells, growth factors and/or signaling biomolecules. Beyond the laboratory-based research and development, the underlying challenges in translational research are also provided in a dedicated section. A new generation of biomaterial-based acellular scaffold systems with uncompromised biocompatibility and osteochondral regenerative capability is necessary to bridge the clinical demand and commercial supply. Encompassing the basic elements of osteochondral research, this review is believed to serve as a standalone guide for early career researchers, in expanding the research horizon to improve the quality of life of osteoarthritic patients affordably.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/d63bba4146b7/rbac109f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/226071302a4b/rbac109f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/46dbad0c4a0d/rbac109f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/9374f3dea27b/rbac109f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/cd2a0f2e03f1/rbac109f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/fbd5a4cc43a6/rbac109f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/1c40775c1c13/rbac109f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/d63bba4146b7/rbac109f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/226071302a4b/rbac109f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/46dbad0c4a0d/rbac109f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/9374f3dea27b/rbac109f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/cd2a0f2e03f1/rbac109f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/fbd5a4cc43a6/rbac109f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/1c40775c1c13/rbac109f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb88/9845524/d63bba4146b7/rbac109f6.jpg

相似文献

[1]
Osteochondral regenerative engineering: challenges, state-of-the-art and translational perspectives.

Regen Biomater. 2022-12-26

[2]
[Preparation and evaluation of tissue engineered osteochondral integration of multi-layered scaffold].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018-4-15

[3]
Bilayered extracellular matrix derived scaffolds with anisotropic pore architecture guide tissue organization during osteochondral defect repair.

Acta Biomater. 2022-4-15

[4]
Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration.

Osteoarthritis Cartilage. 2017-12-9

[5]
Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges.

Bioact Mater. 2021-5-28

[6]
Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration.

Acta Biomater. 2021-11

[7]
Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair.

Acta Biomater. 2022-3-15

[8]
Perspectives on Synthetic Materials to Guide Tissue Regeneration for Osteochondral Defect Repair.

ACS Biomater Sci Eng. 2020-8-10

[9]
Challenges and Innovations in Osteochondral Regeneration: Insights from Biology and Inputs from Bioengineering toward the Optimization of Tissue Engineering Strategies.

J Funct Biomater. 2021-2-27

[10]
Current Concepts and Challenges in Osteochondral Tissue Engineering and Regenerative Medicine.

ACS Biomater Sci Eng. 2015-4-13

引用本文的文献

[1]
Magnesium phosphate functionalized graphene oxide and PLGA composite matrices with enhanced mechanical and osteogenic properties for bone regeneration.

Regen Biomater. 2025-7-26

[2]
Functionalized Annealed Microgels for Spatial Control of Osteogenic and Chondrogenic Differentiation.

Adv Funct Mater. 2024-7-24

[3]
Osteoinductive low-dose 3D porous calcium phosphate graphene oxide-integrated matrices enhance osteogenesis and mechanical properties.

Proc Natl Acad Sci U S A. 2025-7-15

[4]
Rational design matrix materials for organoid development and application in biomedicine.

Regen Biomater. 2025-5-14

[5]
Bi-phasic integrated silk fibroin/polycaprolactone scaffolds for osteochondral regeneration inspired by the native joint tissue and interface.

Mater Today Bio. 2025-4-8

[6]
Modern Approach to Testing the Biocompatibility of Osteochondral Scaffolds in Accordance with the 3Rs Principle─Preclinical , , and Studies Using the Biphasic Curdlan-Based Biomaterial.

ACS Biomater Sci Eng. 2025-2-10

[7]
Engineered Osteochondral Scaffolds with Bioactive Cartilage Zone for Enhanced Articular Cartilage Regeneration.

Ann Biomed Eng. 2025-3

[8]
Challenges and recent advances in engineering the osteochondral interface.

Curr Opin Biomed Eng. 2024-9

[9]
Development of bioactive solid-foam scaffolds from decellularized cartilage with chondrogenic and osteogenic properties.

Mater Today Bio. 2024-9-3

[10]
Injectable cartilage microtissues based on 3D culture using porous gelatin microcarriers for cartilage defect treatment.

Regen Biomater. 2024-6-4

本文引用的文献

[1]
Biodegradable Polyphosphazenes for Regenerative Engineering.

J Mater Res. 2022-4

[2]
Biomaterials for bone tissue engineering scaffolds: a review.

RSC Adv. 2019-8-21

[3]
Biomaterialomics: Data science-driven pathways to develop fourth-generation biomaterials.

Acta Biomater. 2022-4-15

[4]
Platelet-Derived Growth Factor-Functionalized Scaffolds for the Recruitment of Synovial Mesenchymal Stem Cells for Osteochondral Repair.

Stem Cells Int. 2022-1-27

[5]
Development and in vitro assessment of a bi-layered chitosan-nano-hydroxyapatite osteochondral scaffold.

Carbohydr Polym. 2022-4-15

[6]
Scaffold-Based Tissue Engineering Strategies for Osteochondral Repair.

Front Bioeng Biotechnol. 2022-1-11

[7]
Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment.

Proc Natl Acad Sci U S A. 2022-1-25

[8]
Exercise-induced piezoelectric stimulation for cartilage regeneration in rabbits.

Sci Transl Med. 2022-1-12

[9]
Biomimetic gradient scaffold of collagen-hydroxyapatite for osteochondral regeneration.

J Tissue Eng. 2020-1-31

[10]
The synthetic artificial stem cell (SASC): Shifting the paradigm of cell therapy in regenerative engineering.

Proc Natl Acad Sci U S A. 2022-1-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索