Department of Cardiovascular Sciences (S.T., H.H., S.C., P.P., J.V.W., H.G., D.V., F.W., E.C., J.A.S., F.R., B. Meuris, B. Meyns, W.O., J.D., K.G., J.-U.V., M.-C.H., P.H., A.L., S.J.), KU Leuven, Belgium.
Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism (P.d.Z., P.C.), KU Leuven, Belgium.
Circ Heart Fail. 2021 Jan;14(1):e006979. doi: 10.1161/CIRCHEARTFAILURE.120.006979. Epub 2021 Jan 19.
Chronic pressure overload predisposes to heart failure, but the pathogenic role of microvascular endothelial cells (MiVEC) remains unknown. We characterized transcriptional, metabolic, and functional adaptation of cardiac MiVEC to pressure overload in mice and patients with aortic stenosis (AS).
In mice subjected to transverse aortic constriction or sham surgery, we performed RNA sequencing of isolated cardiac -MiVEC and validated the signature in freshly isolated MiVEC from left ventricle outflow tract and right atrium of patients with AS. We next compared their angiogenic and metabolic profiles and finally correlated molecular and pathological signatures with clinical phenotypes of 42 patients with AS (50% women).
In mice, transverse aortic constriction induced progressive systolic dysfunction, fibrosis, and reduced microvascular density. After 10 weeks, 25 genes predominantly involved in matrix-regulation were >2-fold upregulated in isolated MiVEC. Increased transcript levels of (), , , and were confirmed by quantitative reverse transcription polymerase chain reaction and recapitulated in left ventricle outflow tract-derived MiVEC of AS (<0.05 versus right atrium-MiVEC). Fatty acid oxidation increased >2-fold in left ventricle outflow tract-MiVEC, proline content by 130% (median, IQR, 58%-474%; =0.008) and procollagen secretion by 85% (mean [95% CI, 16%-154%]; <0.05 versus right atrium-MiVEC for all). The altered transcriptome in left ventricle outflow tract-MiVEC was associated with impaired 2-dimensional-vascular network formation and 3-dimensional-spheroid sprouting (<0.05 versus right atrium-MiVEC), profibrotic ultrastructural changes, and impaired diastolic left ventricle function, capillary density and functional status, especially in female AS.
Pressure overload induces major transcriptional and metabolic adaptations in cardiac MiVEC resulting in excess interstitial fibrosis and impaired angiogenesis. Molecular rewiring of MiVEC is worse in women, compromises functional status, and identifies novel targets for intervention.
慢性压力超负荷易导致心力衰竭,但微血管内皮细胞(MiVEC)的致病作用仍不清楚。我们对小鼠和主动脉瓣狭窄(AS)患者的心脏 MiVEC 对压力超负荷的转录、代谢和功能适应性进行了描述。
在接受横主动脉缩窄或假手术的小鼠中,我们对分离的心脏 MiVEC 进行了 RNA 测序,并在来自 AS 患者左心室流出道和右心房的新鲜分离 MiVEC 中验证了该特征。接下来,我们比较了它们的血管生成和代谢特征,最后将分子和病理特征与 42 名 AS 患者(50%为女性)的临床表型相关联。
在小鼠中,横主动脉缩窄导致收缩功能障碍、纤维化和微血管密度降低。在 10 周后,25 个主要参与基质调节的基因在分离的 MiVEC 中上调了>2 倍。定量逆转录聚合酶链反应证实了()、()、()和()的转录水平升高,并在 AS 患者的左心室流出道衍生 MiVEC 中重现(<0.05 与右心房-MiVEC)。左心室流出道-MiVEC 中的脂肪酸氧化增加了>2 倍,脯氨酸含量增加了 130%(中位数,IQR,58%-474%;=0.008),原胶原分泌增加了 85%(均值[95%置信区间,16%-154%];<0.05 与右心房-MiVEC 相比)。左心室流出道-MiVEC 中的改变的转录组与 2 维血管网络形成和 3 维球体发芽受损有关(<0.05 与右心房-MiVEC)、纤维增生性超微结构改变以及舒张功能障碍、毛细血管密度和功能状态受损,尤其是在女性 AS 中。
压力超负荷导致心脏 MiVEC 发生重大的转录和代谢适应性改变,导致间质纤维化和血管生成受损。MiVEC 的分子重布线在女性中更差,损害了功能状态,并确定了新的干预靶点。