Emanuel Marc D, Cherstvy Andrey G, Metzler Ralf, Gompper Gerhard
Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
Kavli Institute for Nanoscience, Technical University Delft, 2628 CJ Delft, Netherlands.
Phys Rev E. 2020 Dec;102(6-1):062104. doi: 10.1103/PhysRevE.102.062104.
What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.
在二十面体壳(如许多病毒衣壳)的表面上,两种晶相的最佳分布是怎样的?我们在此研究软材料薄层在晶体凸二十面体壳上的分布情况。我们展示了如何从薄双组分壳的弹性理论角度理解球形病毒的形状。我们发展了一种理论,用于描述在二十面体壳表面添加更软但仍为晶体的材料时其形状的转变。我们展示了软组分如何“侵入”由表面上12个拓扑缺陷所施加的具有最高弹性能和应力的区域。我们探索了作为软材料表面分数、壳尺寸以及刚性和软相弹性模量失配函数的相图。我们发现,正如预期的那样,软相逐渐填充刚性壳是从二十面体最变形的区域开始的。随着软相覆盖率逐渐增加,穹顶的球形部分首先被填充(壳的12个顶点),接着连接穹顶的圆柱形部分(30条边)被侵入,最终,二十面体壳的20个平面趋向于被软材料占据。我们对这一侵入过程的前两个阶段进行了详细的理论研究,并建立了一个允许非圆形横截面的圆锥结构形态变化模型。总之,我们讨论了从我们的计算中预测出的一些结构的生物学相关性,特别是对于病毒衣壳的形状。