Suppr超能文献

基于计算机的机械疲劳测试:纳米级生物颗粒材料性能的动态演变。

Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.

机构信息

Department of Chemistry, University of Massachusetts, Lowell, MA 01854, United States.

Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, PA, United States.

出版信息

Acta Biomater. 2023 Aug;166:326-345. doi: 10.1016/j.actbio.2023.04.042. Epub 2023 May 2.

Abstract

Biological particles have evolved to possess mechanical characteristics necessary to carry out their functions. We developed a computational approach to "fatigue testing in silico", in which constant-amplitude cyclic loading is applied to a particle to explore its mechanobiology. We used this approach to describe dynamic evolution of nanomaterial properties and low-cycle fatigue in the thin spherical encapsulin shell, thick spherical Cowpea Chlorotic Mottle Virus (CCMV) capsid, and thick cylindrical microtubule (MT) fragment over 20 cycles of deformation. Changing structures and force-deformation curves enabled us to describe their damage-dependent biomechanics (strength, deformability, stiffness), thermodynamics (released and dissipated energies, enthalpy, and entropy) and material properties (toughness). Thick CCMV and MT particles experience material fatigue due to slow recovery and damage accumulation over 3-5 loading cycles; thin encapsulin shells show little fatigue due to rapid remodeling and limited damage. The results obtained challenge the existing paradigm: damage in biological particles is partially reversible owing to particle's partial recovery; fatigue crack may or may not grow with each loading cycle and may heal; and particles adapt to deformation amplitude and frequency to minimize the energy dissipated. Using crack size to quantitate damage is problematic as several cracks might form simultaneously in a particle. Dynamic evolution of strength, deformability, and stiffness, can be predicted by analyzing the cycle number (N) dependent damage, [Formula: see text] , where α is a power law and N is fatigue life. Fatigue testing in silico can now be used to explore damage-induced changes in the material properties of other biological particles. STATEMENT OF SIGNIFICANCE: Biological particles possess mechanical characteristics necessary to perform their functions. We developed "fatigue testing in silico" approach, which employes Langevin Dynamics simulations of constant-amplitude cyclic loading of nanoscale biological particles, to explore dynamic evolution of the mechanical, energetic, and material properties of the thin and thick spherical particles of encapsulin and Cowpea Chlorotic Mottle Virus, and the microtubule filament fragment. Our study of damage growth and fatigue development challenge the existing paradigm. Damage in biological particles is partially reversible as fatigue crack might heal with each loading cycle. Particles adapt to deformation amplitude and frequency to minimize energy dissipation. The evolution of strength, deformability, and stiffness, can be accurately predicted by analyzing the damage growth in particle structure.

摘要

生物颗粒进化出了执行其功能所需的机械特性。我们开发了一种计算方法来进行“计算机疲劳测试”,通过对颗粒施加恒幅循环载荷来探索其力学生物学。我们使用这种方法来描述纳米材料性质的动态演变和薄壁球形包裹体壳、厚球形豇豆花叶病毒(CCMV)衣壳以及厚圆柱形微管(MT)片段的低周疲劳,在 20 个变形周期中进行了循环加载。结构和力-变形曲线的变化使我们能够描述它们的损伤相关生物力学特性(强度、可变形性、刚性)、热力学特性(释放和耗散能量、焓和熵)以及材料特性(韧性)。由于在 3-5 个加载周期内恢复缓慢且损伤累积,厚 CCMV 和 MT 颗粒会经历材料疲劳;而薄壁包裹体壳由于快速重塑和有限的损伤,几乎没有疲劳。研究结果挑战了现有的范式:由于颗粒的部分恢复,生物颗粒中的损伤部分是可逆的;疲劳裂纹可能会随着每一个加载周期而增长,也可能会愈合;颗粒会适应变形幅度和频率以最小化耗散的能量。由于在一个颗粒中可能同时形成几个裂纹,因此使用裂纹尺寸来定量损伤是有问题的。通过分析依赖于损伤的循环数(N),[公式:见文本],其中α是幂律,N 是疲劳寿命,可以预测强度、可变形性和刚性的动态演变。现在,计算机疲劳测试可以用于探索其他生物颗粒的材料性质因损伤而发生的变化。

意义陈述

生物颗粒具有执行其功能所需的机械特性。我们开发了一种“计算机疲劳测试”方法,该方法采用 Langevin 动力学模拟对纳米级生物颗粒进行恒幅循环加载,以探索薄壁和厚壁球形包裹体和豇豆花叶病毒,以及微管丝片段的机械、能量和材料特性的动态演变。我们对损伤增长和疲劳发展的研究挑战了现有的范式。由于疲劳裂纹可能会随着每个加载周期而愈合,因此生物颗粒中的损伤部分是可逆的。颗粒会适应变形幅度和频率以最小化能量耗散。通过分析颗粒结构中的损伤增长,可以准确预测强度、可变形性和刚性的演变。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验