Suppr超能文献

Explicit Granger causality in kernel Hilbert spaces.

作者信息

Bueso Diego, Piles Maria, Camps-Valls Gustau

机构信息

Image Processing Laboratory (IPL), Universitat de València, 46010 València, Spain.

出版信息

Phys Rev E. 2020 Dec;102(6-1):062201. doi: 10.1103/PhysRevE.102.062201.

Abstract

Granger causality (GC) is undoubtedly the most widely used method to infer cause-effect relations from observational time series. Several nonlinear alternatives to GC have been proposed based on kernel methods. We generalize kernel Granger causality by considering the variables' cross-relations explicitly in Hilbert spaces. The framework is shown to generalize the linear and kernel GC methods and comes with tighter bounds of performance based on Rademacher complexity. We successfully evaluate its performance in standard dynamical systems, as well as to identify the arrow of time in coupled Rössler systems, and it is exploited to disclose the El Niño-Southern Oscillation phenomenon footprints on soil moisture globally.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验