Bouhassoune Mohammed, Lounis Samir
Peter Grünberg Institut & Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, D-52425 Jülich, Germany.
Département de Physique, FPS, Cadi Ayyad University, 40000 Marrakech, Morocco.
Nanomaterials (Basel). 2021 Jan 14;11(1):194. doi: 10.3390/nano11010194.
Magnetic skyrmions are spin swirling solitonic defects that can play a major role in information technology. Their future in applications and devices hinges on their efficient manipulation and detection. Here, we explore from ab-initio their nature as magnetic inhomongeities in an otherwise unperturbed magnetic material, Fe layer covered by a thin Pd film and deposited on top of Ir(111) surface. The presence of skyrmions triggers scattering processes, from which Friedel oscillations emerge. The latter mediate interactions among skyrmions or between skyrmions and other potential surrounding defects. In contrast to their wavelengths, the amplitude of the oscillations depends strongly on the size of the skyrmion. The analogy with the scattering-off atomic defects enables the assignment of an effective scattering potential and a phase shift to the skyrmionic particles, which can be useful to predict their behavior on the basis of simple scattering frameworks. The induced charge ripples can be utilized for a noninvasive all-electrical detection of skyrmions located on a surface or even if buried a few nanometers away from the detecting electrode.
磁斯格明子是自旋漩涡孤子缺陷,在信息技术中可发挥重要作用。它们在应用和器件方面的未来取决于对其进行高效操控和检测。在此,我们从第一性原理出发,探究它们在一种原本未受干扰的磁性材料中的性质,该材料是覆盖有薄钯膜并沉积在铱(111)表面之上的铁层。斯格明子的存在引发散射过程,由此出现弗里德尔振荡。后者介导斯格明子之间或斯格明子与其他潜在周围缺陷之间的相互作用。与它们的波长不同,振荡的幅度强烈依赖于斯格明子的大小。与由原子缺陷引起的散射的类比,使得能够为斯格明子粒子赋予一个有效散射势和一个相移,这对于基于简单散射框架预测它们的行为可能是有用的。所诱导的电荷涟漪可用于对位于表面上甚至埋在距检测电极几纳米远处的斯格明子进行非侵入式全电检测。