Suppr超能文献

亚纳米尺度的原子级加工技术可用于调控斯格明子缺陷相互作用的轮廓。

Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles.

机构信息

Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany.

出版信息

Sci Rep. 2020 Sep 4;10(1):14655. doi: 10.1038/s41598-020-71232-2.

Abstract

Magnetic skyrmions are prime candidates as information carriers for spintronic devices due to their topological nature and nanometric size. However, unavoidable inhomogeneities inherent to any material leads to pinning or repulsion of skyrmions that, in analogy to biology concepts, define the phenotype of the skyrmion-defect interaction, generating complexity in their motion and challenging their application as future bits of information. Here, we demonstrate that atom-by-atom manufacturing of multi-atomic defects, being antiferromagnetic or ferromagnetic, permits the breeding of their energy profiles, for which we build schematically a Punnet-square. As established from first-principles for skyrmions generated in PdFe bilayer on Ir(111) surface, the resulting interaction phenotype is rich. It can be opposite to the original one and eventually be of dual pinning-repulsive nature yielding energy landscapes hosting multi-domains. This is dictated by the stacking site, geometry, size and chemical nature of the adsorbed defects, which control the involved magnetic interactions. This work provides new insights towards the development of disruptive device architectures incorporating defects into their design aiming to control and guide skyrmions.

摘要

磁斯格明子由于其拓扑性质和纳米尺寸,是自旋电子器件中信息载体的首选。然而,任何材料中不可避免的不均匀性会导致斯格明子的钉扎或排斥,这类似于生物学概念,定义了斯格明子缺陷相互作用的表型,在它们的运动中产生复杂性,并对它们作为未来信息位的应用提出挑战。在这里,我们证明了通过原子级制造多原子缺陷,无论是反铁磁或铁磁的,都可以改变它们的能量分布,我们为此构建了一个遗传棋盘。正如在 Ir(111)表面上的 PdFe 双层中产生的斯格明子的第一性原理所确定的,所产生的相互作用表型是丰富的。它可以与原始的相互作用相反,最终具有双重钉扎-排斥性质,从而产生具有多畴的能量景观。这是由吸附缺陷的堆叠位置、几何形状、大小和化学性质决定的,这些因素控制了所涉及的磁相互作用。这项工作为开发将缺陷纳入其设计的颠覆性器件架构提供了新的见解,旨在控制和引导斯格明子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3556/7474088/d7e18f39bb8a/41598_2020_71232_Fig1_HTML.jpg

相似文献

1
Sub-nanoscale atom-by-atom crafting of skyrmion-defect interaction profiles.
Sci Rep. 2020 Sep 4;10(1):14655. doi: 10.1038/s41598-020-71232-2.
2
Universality of defect-skyrmion interaction profiles.
Nat Commun. 2018 Oct 22;9(1):4395. doi: 10.1038/s41467-018-06827-5.
4
Controlled Individual Skyrmion Nucleation at Artificial Defects Formed by Ion Irradiation.
Small. 2020 Apr;16(13):e1907450. doi: 10.1002/smll.201907450. Epub 2020 Mar 5.
5
Skyrmion-skyrmion interaction induced by itinerant electrons in a ferromagnetic strip.
J Phys Condens Matter. 2022 Dec 12;35(4). doi: 10.1088/1361-648X/aca5dc.
6
Pinning and rotation of a skyrmion in Co nanodisk with nanoengineered point and ring defects.
J Phys Condens Matter. 2021 Jan 11. doi: 10.1088/1361-648X/abda7e.
8
Antiferromagnetic skyrmion repulsion based artificial neuron device.
Nanotechnology. 2021 Mar 4;32(21). doi: 10.1088/1361-6528/abe261.
9
Energy-efficient synthetic antiferromagnetic skyrmion-based artificial neuronal device.
Nanotechnology. 2024 Aug 12;35(43). doi: 10.1088/1361-6528/ad6997.
10
Fractional antiferromagnetic skyrmion lattice induced by anisotropic couplings.
Nature. 2020 Oct;586(7827):37-41. doi: 10.1038/s41586-020-2716-8. Epub 2020 Sep 23.

引用本文的文献

1
Intrinsic Néel Antiferromagnetic Multimeronic Spin Textures in Ultrathin Films.
J Phys Chem Lett. 2023 Oct 12;14(40):8970-8978. doi: 10.1021/acs.jpclett.3c02419. Epub 2023 Sep 29.
3
Skyrmion pinning energetics in thin film systems.
Nat Commun. 2022 Jun 6;13(1):3144. doi: 10.1038/s41467-022-30743-4.
4
Friedel Oscillations Induced by Magnetic Skyrmions: From Scattering Properties to All-Electrical Detection.
Nanomaterials (Basel). 2021 Jan 14;11(1):194. doi: 10.3390/nano11010194.

本文引用的文献

1
Accelerating, guiding, and compressing skyrmions by defect rails.
Nanoscale. 2019 Jul 14;11(26):12589-12594. doi: 10.1039/c9nr02171j. Epub 2019 Jun 24.
2
Universality of defect-skyrmion interaction profiles.
Nat Commun. 2018 Oct 22;9(1):4395. doi: 10.1038/s41467-018-06827-5.
3
Avalanches and Criticality in Driven Magnetic Skyrmions.
Phys Rev Lett. 2018 Mar 16;120(11):117203. doi: 10.1103/PhysRevLett.120.117203.
4
Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature.
Nat Nanotechnol. 2018 Mar;13(3):233-237. doi: 10.1038/s41565-017-0044-4. Epub 2018 Jan 29.
6
Room-Temperature Skyrmion Shift Device for Memory Application.
Nano Lett. 2017 Jan 11;17(1):261-268. doi: 10.1021/acs.nanolett.6b04010. Epub 2016 Dec 19.
7
Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory.
Sci Rep. 2016 Mar 15;6:23164. doi: 10.1038/srep23164.
9
Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry.
Nano Lett. 2016 Mar 9;16(3):1981-8. doi: 10.1021/acs.nanolett.5b05257. Epub 2016 Feb 11.
10
Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures.
Nat Nanotechnol. 2016 May;11(5):449-54. doi: 10.1038/nnano.2015.315. Epub 2016 Jan 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验