Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425, Jülich, Germany.
Sci Rep. 2020 Sep 4;10(1):14655. doi: 10.1038/s41598-020-71232-2.
Magnetic skyrmions are prime candidates as information carriers for spintronic devices due to their topological nature and nanometric size. However, unavoidable inhomogeneities inherent to any material leads to pinning or repulsion of skyrmions that, in analogy to biology concepts, define the phenotype of the skyrmion-defect interaction, generating complexity in their motion and challenging their application as future bits of information. Here, we demonstrate that atom-by-atom manufacturing of multi-atomic defects, being antiferromagnetic or ferromagnetic, permits the breeding of their energy profiles, for which we build schematically a Punnet-square. As established from first-principles for skyrmions generated in PdFe bilayer on Ir(111) surface, the resulting interaction phenotype is rich. It can be opposite to the original one and eventually be of dual pinning-repulsive nature yielding energy landscapes hosting multi-domains. This is dictated by the stacking site, geometry, size and chemical nature of the adsorbed defects, which control the involved magnetic interactions. This work provides new insights towards the development of disruptive device architectures incorporating defects into their design aiming to control and guide skyrmions.
磁斯格明子由于其拓扑性质和纳米尺寸,是自旋电子器件中信息载体的首选。然而,任何材料中不可避免的不均匀性会导致斯格明子的钉扎或排斥,这类似于生物学概念,定义了斯格明子缺陷相互作用的表型,在它们的运动中产生复杂性,并对它们作为未来信息位的应用提出挑战。在这里,我们证明了通过原子级制造多原子缺陷,无论是反铁磁或铁磁的,都可以改变它们的能量分布,我们为此构建了一个遗传棋盘。正如在 Ir(111)表面上的 PdFe 双层中产生的斯格明子的第一性原理所确定的,所产生的相互作用表型是丰富的。它可以与原始的相互作用相反,最终具有双重钉扎-排斥性质,从而产生具有多畴的能量景观。这是由吸附缺陷的堆叠位置、几何形状、大小和化学性质决定的,这些因素控制了所涉及的磁相互作用。这项工作为开发将缺陷纳入其设计的颠覆性器件架构提供了新的见解,旨在控制和引导斯格明子。